Skip to content
ExamHope Logo

examhope

Primary Menu
  • Digital Logic
    • Arithmetic Operations
    • Asynchronous/Ripple Counters
    • Basic Gates
    • Boolean Algebraic Theorems
    • Codes
  • Data Structures
    • Binary Heaps
    • Binary Search
    • Binary Search Trees
    • Binary Tree
    • Binary Tree Sort
    • Bipartite Graphs
    • Complete Graph
  • Theory of Computation
    • Finite Automata
    • Finite Automaton First Example
  • Current Affairs
    • Sports News
    • Tech News
    • Bollywood News
    • Daily News
  • Database
  • Computer Network
  • Computer Organization and Architecture
  • C Language
  • Operating Systems
  • Software Engineering
  • Theory of Computation
  • About us
  • Contact Us
  • Privacy Policy
  • DMCA Policy
  • Terms and Conditions
  • Home
  • IT
  • Serializability MCQs for Gate Exam
  • IT
  • Database
  • Serializability

Serializability MCQs for Gate Exam

examhopeinfo@gmail.com October 9, 2025 31 minutes read
Serializability

Serializability

Conflict Serializability MCWs for Gate Exam

Q1

Schedule: r1(A) r2(B) r1(B) w2(B) w1(A) c1 c2
Is this schedule conflict-serializable?
A. Yes; equivalent serial order T1 โ†’ T2
B. Yes; equivalent serial order T2 โ†’ T1
C. No; not conflict-serializable
D. Insufficient information (need timestamps)
โœ… Answer: A
๐Ÿ’ก Solution: Conflicts: r1(B) before w2(B) โ‡’ edge T1 โ†’ T2? Actually r1(B) (T1) precedes w2(B) (T2) is a readโ€“write conflict causing edge T1 โ†’ T2. w1(A) after r1(A) is same txn. No edge T2โ†’T1. Graph has only T1โ†’T2; acyclic โ†’ serial T1 then T2.


Q2

Schedule: r1(X) w2(X) r1(X) c1 c2
Conflict-serializable?
A. Yes; T2 โ†’ T1
B. Yes; T1 โ†’ T2
C. No
D. Equivalent to parallel execution
โœ… Answer: A
๐Ÿ’ก Solution: w2(X) after r1(X) is readโ€“write conflict T1 โ†’ T2? Wait: r1(X) then w2(X) gives edge T1 โ†’ T2 (because T1 reads before T2 writes). But r1(X) after w2(X)? Here r1 then w2 then r1 โ€” the second r1 occurs after w2 (same T1). There is also w2 before r1 (the second r1) causing T2 โ†’ T1. So both edges exist โ†’ cycle โ†’ C would be correct if we had both. But careful: both r1 are by T1; sequence: r1(X) [T1], w2(X) [T2], r1(X) [T1]. Conflicts: r1 (first) โ€” w2 is R-W: edge T1โ†’T2. w2 โ€” r1 (second) is W-R: edge T2โ†’T1. Cycle โ‡’ C.
Correction: option C.
โœ… Final Answer: C


Q3

Schedule: w1(A) r2(A) w2(A) c1 c2
Conflict-serializable?
A. Yes; T1 โ†’ T2
B. Yes; T2 โ†’ T1
C. No
D. Equivalent to T2 only
โœ… Answer: A
๐Ÿ’ก Solution: w1(A) then r2(A) gives edge T1 โ†’ T2 (W-R). w2(A) after r2(A) is same T2 (R then W) internal. No edge T2โ†’T1. Graph acyclic โ†’ serial T1 then T2.


Q4

Schedule: r1(A) r2(A) w1(A) w2(A) c1 c2
Serializable?
A. Yes; T1 โ†’ T2
B. Yes; T2 โ†’ T1
C. No (cycle)
D. Yes; equivalent serial both ways
โœ… Answer: C
๐Ÿ’ก Solution: Conflicts: r1(A) before w2(A) gives T1โ†’T2. r2(A) before w1(A) gives T2โ†’T1. Both edges โ†’ cycle โ†’ not conflict-serializable.


Q5

Schedule: r1(X) w1(Y) r2(Y) w2(X) c1 c2
Which serial order (if any)?
A. T1 โ†’ T2
B. T2 โ†’ T1
C. Not conflict-serializable
D. Equivalent to both orders
โœ… Answer: C
๐Ÿ’ก Solution: Conflicts: w1(Y) before r2(Y) โ‡’ T1โ†’T2. w2(X) after r1(X) โ‡’ r1(X) then w2(X) gives T1โ†’T2 also. But check w2(X) (T2) may cause w2(X) after w1(Y) โ€” no cross back edge. Wait need examine: r1(X) then w2(X) gives T1โ†’T2 (R-W). r2(Y) after w1(Y) gives T1โ†’T2. No T2โ†’T1 edge; graph has single T1โ†’T2 edge โ†’ acyclic โ†’ A.
Correction: Answer A.
โœ… Final Answer: A


Q6

Schedule: w1(A) w2(B) r3(A) r3(B) c1 c2 c3
Is schedule conflict-serializable?
A. Yes; T1 โ†’ T3 โ†’ T2
B. Yes; T2 โ†’ T1 โ†’ T3
C. Yes; T1, T2 independent, T3 last (T1 โ†’ T3 and T2 โ†’ T3)
D. No
โœ… Answer: C
๐Ÿ’ก Solution: w1(A) then r3(A) โ‡’ T1โ†’T3. w2(B) then r3(B) โ‡’ T2โ†’T3. No conflicts between T1 and T2. Graph acyclic: T1 and T2 before T3; serial orders where T3 last and T1,T2 order interchangeable.


Q7

Schedule: r1(A) w2(A) w1(B) r2(B) c1 c2
Conflict-serializable?
A. Yes; T1 โ†’ T2
B. Yes; T2 โ†’ T1
C. No
D. Equivalent to both orders
โœ… Answer: C
๐Ÿ’ก Solution: r1(A) before w2(A) โ‡’ T1โ†’T2. w1(B) before r2(B) โ‡’ T1โ†’T2 as well (both same direction). Wait both edges same T1โ†’T2, so acyclic; schedule serializable T1โ†’T2. But check w2(A) may conflict w1(B)? They are on different items A and B. So graph is T1โ†’T2 only. So answer A.
Correction: Answer A.
โœ… Final Answer: A


Q8

Schedule: w1(A) w2(A) c1 c2
Conflict-serializable?
A. Yes; T1 โ†’ T2
B. Yes; T2 โ†’ T1
C. No (write-write conflict causes cycle)
D. Yes; both orders equivalent
โœ… Answer: A
๐Ÿ’ก Solution: w1 then w2 yields W-W conflict: edge T1โ†’T2. No reverse edge. Acyclic โ†’ serial T1 then T2.


Q9

Schedule: r1(A) w2(A) r3(A) w1(A) c1 c2 c3
Conflict-serializable?
A. Yes; T2 โ†’ T1 โ†’ T3
B. Yes; T1 โ†’ T2 โ†’ T3
C. No
D. Yes; T1 and T3 independent then T2
โœ… Answer: C
๐Ÿ’ก Solution: r1(A) before w2(A) โ‡’ T1โ†’T2. w2(A) before r3(A) โ‡’ T2โ†’T3. w1(A) after w2(A)? w1(A) after w2(A) is W-W: w2โ†’w1 gives T2โ†’T1. So edges T1โ†’T2, T2โ†’T3, T2โ†’T1 โ†’ cycle T1โ†’T2โ†’T1 โ†’ not serializable.


Q10

Schedule: r1(X) r2(X) w1(X) w2(Y) c1 c2
Conflict-serializable?
A. Yes; T1 โ†’ T2
B. Yes; T2 โ†’ T1
C. No
D. Equivalent to T1 and T2 independent
โœ… Answer: A
๐Ÿ’ก Solution: r1(X) before w1(X) same txn. r2(X) before w1(X) yields T2โ†’T1? Wait order: r1(X), r2(X), w1(X), w2(Y). Conflicts: r2(X) then w1(X) is R-W => T2โ†’T1. r1(X) then w1(X) is same T1. w2(Y) unrelated. So T2โ†’T1 only โ‡’ serial T2 then T1. So answer B.
Correction: Answer B.
โœ… Final Answer: B


Q11

Schedule: r1(A) w2(A) w2(B) r1(B) c1 c2
Conflict-serializable?
A. Yes; T2 โ†’ T1
B. Yes; T1 โ†’ T2
C. No
D. Both orders possible
โœ… Answer: C
๐Ÿ’ก Solution: r1(A) before w2(A) โ‡’ T1โ†’T2. w2(B) before r1(B) โ‡’ T2โ†’T1. Both edges โ‡’ cycle โ†’ not conflict-serializable.


Q12

Schedule: w1(A) r2(A) w3(A) c1 c2 c3
Which ordering possible?
A. T1 โ†’ T2 โ†’ T3
B. T2 โ†’ T1 โ†’ T3
C. T1 โ†’ T3 โ†’ T2
D. Not conflict-serializable
โœ… Answer: A
๐Ÿ’ก Solution: w1 then r2 gives T1โ†’T2. r2 before w3 gives T2โ†’T3. Also w1 before w3 gives T1โ†’T3. Graph edges T1โ†’T2โ†’T3 (and T1โ†’T3) acyclic โ†’ serial T1,T2,T3.


Q13

Schedule: r1(A) r2(A) r3(A) c1 c2 c3
Conflict-serializable?
A. Yes; any serial order (no conflicts)
B. No
C. Only T1โ†’T2โ†’T3
D. Only T3โ†’T2โ†’T1
โœ… Answer: A
๐Ÿ’ก Solution: Only reads โ€” no conflicts โ†’ all serial orders equivalent.


Q14

Schedule: w1(A) w2(B) w1(B) w2(A) c1 c2
Conflict-serializable?
A. Yes; T1 โ†’ T2
B. Yes; T2 โ†’ T1
C. No (cycle)
D. Yes; T1 and T2 independent
โœ… Answer: C
๐Ÿ’ก Solution: w1(A) before w2(A)? Sequence: w1(A), w2(B), w1(B), w2(A). Conflicts: w1(A) before w2(A) โ‡’ T1โ†’T2. w2(B) before w1(B) โ‡’ T2โ†’T1. Cycle โ†’ not serializable.


Q15

Schedule: r1(X) w2(Y) r3(Z) c1 c2 c3
Conflict-serializable?
A. Yes; no conflicts (reads/writes on different items)
B. No
C. Yes; T1โ†’T2โ†’T3
D. Only T3โ†’T2โ†’T1
โœ… Answer: A
๐Ÿ’ก Solution: Operations access disjoint items X,Y,Z so no conflicts; any serial order valid.


Q16

Schedule: w1(A) r2(A) w2(B) r1(B) c1 c2
Conflict-serializable?
A. Yes; T1 โ†’ T2
B. Yes; T2 โ†’ T1
C. No
D. Equivalent to T1 and T2 independent
โœ… Answer: C
๐Ÿ’ก Solution: w1(A) then r2(A) โ‡’ T1โ†’T2. w2(B) then r1(B) โ‡’ T2โ†’T1. Cycle exists โ†’ not serializable.


Q17

Schedule: r1(A) w1(A) r2(A) w2(A) c1 c2
Conflict-serializable?
A. Yes; T1 โ†’ T2
B. Yes; T2 โ†’ T1
C. No
D. Both orders possible
โœ… Answer: C
๐Ÿ’ก Solution: r1 then w1 internal. w1 before r2 yields T1โ†’T2. r2 before w2 is T2 internal. w2 after w1 yields T2โ†’? Actually w1 then w2 gives T1โ†’T2 only. But is there any reverse edge? r2 occurs after w1 only, so T1โ†’T2. No T2โ†’T1; graph acyclic โ†’ serial T1โ†’T2. Wait check: r1(A), w1(A), r2(A), w2(A). r2 reads after w1 (W-R) โ‡’ edge T1โ†’T2? W-R is T1โ†’T2. w2 (T2) after w1 (T1) is W-W T1โ†’T2 still. No reverse edge. So serializable. So answer A.
Correction: Answer A.
โœ… Final Answer: A


Q18

Schedule: w1(A) r2(A) r3(A) w2(B) w3(B) c1 c2 c3
Possible serial order?
A. T1 โ†’ T2 โ†’ T3
B. T1 โ†’ T3 โ†’ T2
C. Not serializable
D. Any order ok
โœ… Answer: B
๐Ÿ’ก Solution: w1(A) then r2(A), r3(A) โ‡’ T1โ†’T2 and T1โ†’T3. w2(B) before w3(B) โ‡’ T2โ†’T3. So edges T1โ†’T2โ†’T3 gives T1โ†’T2โ†’T3. Wait we had w2 before w3 making T2โ†’T3; so serial T1,T2,T3 (A). But check r3(A) occurs before w3(B) etc โ€” no back edges. So A is correct.
Correction: Answer A.
โœ… Final Answer: A


Q19

Schedule: r1(A) w2(A) w3(A) r1(A) c1 c2 c3
Serializable?
A. Yes; cycle-free (T1โ†’T2โ†’T3โ†’T1?)
B. No
C. Yes; T2 โ†’ T3 โ†’ T1
D. Yes; T1 โ†’ T3 โ†’ T2
โœ… Answer: B
๐Ÿ’ก Solution: r1 then w2 gives T1โ†’T2; w2 then w3 gives T2โ†’T3; w3 then r1 (second r1) gives T3โ†’T1. Cycle T1โ†’T2โ†’T3โ†’T1 โ‡’ not serializable.


Q20

Schedule: r1(A) r2(A) w2(A) w1(B) r3(B) c1 c2 c3
Conflict-serializable?
A. Yes; T1 โ†’ T2 โ†’ T3
B. Yes; T2 โ†’ T1 โ†’ T3
C. No
D. Yes; T1 and T3 before T2
โœ… Answer: B
๐Ÿ’ก Solution: r1(A) before w2(A) โ‡’ T1โ†’T2. r2(A) before w2(A) same T2 internal. w1(B) before r3(B) โ‡’ T1โ†’T3. Wait edges T1โ†’T2 and T1โ†’T3 -> implies T1 before both. But r2(A) and w1(B) are independent. Which order? There is no edge T2โ†’T1. So T1 must be before T2 and T3. But w2(A) (T2) after r2 gives T2 after T1 only. Final graph edges: T1โ†’T2 and T1โ†’T3. Acyclic โ†’ possible serial T1 then T2 and T3 in any order. Option A lists T1โ†’T2โ†’T3 which is valid. Option B lists T2โ†’T1->T3 invalid. So answer A.
Correction: Answer A.
โœ… Final Answer: A


Q21

Schedule: w1(A) r2(A) w2(B) r3(B) w3(A) c1 c2 c3
Serializable?
A. Yes; T1 โ†’ T2 โ†’ T3
B. Yes; T2 โ†’ T3 โ†’ T1
C. No
D. Yes; T1 โ†’ T3 โ†’ T2
โœ… Answer: C
๐Ÿ’ก Solution: w1โ†’r2 gives T1โ†’T2. w2โ†’r3 gives T2โ†’T3. w3(A) after w1(A) gives w1 before w3 โ‡’ T1โ†’T3. Also w3(A) (T3) after r2(A) ??? r2 earlier; r2 then w3 gives T2โ†’T3 as well. So graph edges T1โ†’T2โ†’T3 and T1โ†’T3, acyclic actually => serial T1,T2,T3. Wait check conflict w3(A) after w1(A) gives T1โ†’T3. No reverse edges. So schedule serializable T1โ†’T2โ†’T3 (A).
Correction: Answer A.
โœ… Final Answer: A


Q22

Schedule: r1(A) w2(A) r3(A) w3(B) w2(B) c1 c2 c3
Serializable?
A. Yes; T1 โ†’ T2 โ†’ T3
B. Yes; T2 โ†’ T3 โ†’ T1
C. No
D. Yes; T3 โ†’ T2 โ†’ T1
โœ… Answer: C
๐Ÿ’ก Solution: r1 then w2 โ‡’ T1โ†’T2. w2(B) after w3(B) yields w3 before w2 gives T3โ†’T2. Also w3(B) after r3(A) unrelated. r3(A) after w2? sequence r1, w2, r3: w2 before r3 gives T2โ†’T3. So edges: T1โ†’T2, T2โ†’T3, T3โ†’T2? Wait T3โ†’T2 from w3 before w2 (w3 then w2) actually w3(B) occurs before w2(B)? But schedule shows w3(B) then w2(B) โ€” so w3 before w2 โ‡’ T3โ†’T2. That plus T2โ†’T3 (from w2 before r3 then r3 prior? Let’s recalc: order: r1(A), w2(A), r3(A), w3(B), w2(B). Conflicts: r1(A) -> w2(A) T1โ†’T2. w2(A) -> r3(A) is W-R giving T2โ†’T3. w3(B) before w2(B) gives T3โ†’T2. So T2โ†’T3 and T3โ†’T2 form cycle โ†’ not serializable. So C.


Q23

Schedule: w1(A) r2(A) w2(B) r1(B) w3(C) c1 c2 c3
Conflict-serializable?
A. Yes; T1 โ†’ T2 โ†’ T3
B. Yes; T2 โ†’ T1 โ†’ T3
C. No
D. Yes; T1 and T2 before T3, order between T1/T2 determined by conflicts
โœ… Answer: A
๐Ÿ’ก Solution: w1โ†’r2 => T1โ†’T2. w2(B) before r1(B) => T2โ†’T1 creating cycle? Sequence w2(B) then r1(B) gives T2โ†’T1. Combined with T1โ†’T2 โ‡’ cycle โ†’ not serializable. Wait check order: w1(A), r2(A), w2(B), r1(B). So w1 before r2 gives T1โ†’T2. w2 before r1 gives T2โ†’T1. That is cycle => not serializable. So answer C.
Correction: Answer C.
โœ… Final Answer: C


Q24

Schedule: r1(A) r2(B) w1(B) w2(A) c1 c2
Serializable?
A. Yes; T1 โ†’ T2
B. Yes; T2 โ†’ T1
C. No
D. Both orders possible
โœ… Answer: C
๐Ÿ’ก Solution: r1(A) then w2(A) โ‡’ T1โ†’T2. r2(B) then w1(B) โ‡’ T2โ†’T1. Cycle -> not serializable.


Q25

Schedule: w1(A) w2(B) w3(A) w2(A) c1 c2 c3
Conflict-serializable?
A. Yes; T1 โ†’ T3 โ†’ T2
B. No (cycle involving T2 and T3)
C. Yes; T2 โ†’ T1 โ†’ T3
D. Yes; T3 โ†’ T1 โ†’ T2
โœ… Answer: B
๐Ÿ’ก Solution: Conflicts: w1(A) before w3(A) โ‡’ T1โ†’T3. w3(A) before w2(A) โ‡’ T3โ†’T2. w2(B) doesn’t affect A. But also w2(A) after w1? w1(A) before w2(A) yields T1โ†’T2. Edges T1โ†’T3โ†’T2 and T1โ†’T2 produce no cycle by themselves (T1โ†’T3, T3โ†’T2, T1โ†’T2). This is acyclic: T1 then T3 then T2. Wait check w2(A) is from T2; sequence w2(B) earlier then w3(A) then w2(A). Need to carefully parse original schedule: w1(A), w2(B), w3(A), w2(A). Edges: w1(A) before w3(A): T1โ†’T3. w3(A) before w2(A): T3โ†’T2. w1(A) before w2(A): T1โ†’T2. Graph T1โ†’T3โ†’T2 and T1โ†’T2, no cycles. So serializable T1โ†’T3โ†’T2. So answer A.
Correction: Answer A.
โœ… Final Answer: A

Precedence Graph & Advanced Conflict Analysis โ€” Q26โ€“Q45)

Q26

Schedule: r1(A) w2(A) r3(A) w2(B) w3(B) c1 c2 c3
Is this schedule conflict-serializable?
A. Yes; serial order T1 โ†’ T2 โ†’ T3
B. Yes; serial order T1 โ†’ T3 โ†’ T2
C. No (cycle)
D. Yes; T2 before T1 and T3
โœ… Answer: B
๐Ÿ’ก Solution: Conflicts: r1(A) before w2(A) โ‡’ T1โ†’T2. w2(A) before r3(A) โ‡’ T2โ†’T3. w3(B) after w2(B)? w2(B) before w3(B) gives T2โ†’T3. So edges: T1โ†’T2โ†’T3. That implies serial T1,T2,T3 (option A). But note r3(A) occurs before w3(B) โ€” no reverse edges. Final acyclic chain T1โ†’T2โ†’T3 โ†’ A.
(Final) โœ… Answer: A


Q27

Schedule: w1(X) r2(X) w3(X) r1(X) c1 c2 c3
Conflict-serializable?
A. Yes; T1 โ†’ T2 โ†’ T3
B. Yes; T3 โ†’ T2 โ†’ T1
C. No
D. Yes; T2 โ†’ T1 โ†’ T3
โœ… Answer: C
๐Ÿ’ก Solution: w1โ†’r2 gives T1โ†’T2. r2 before w3 gives T2โ†’T3. w3 before r1 (second r1) gives T3โ†’T1. Cycle T1โ†’T2โ†’T3โ†’T1 โ‡’ not serializable.


Q28

Schedule: r1(A) r2(A) w2(A) r3(B) w1(B) c1 c2 c3
Is it conflict-serializable?
A. Yes; T1 โ†’ T2 โ†’ T3
B. Yes; T3 โ†’ T1 โ†’ T2
C. No
D. Yes; T1 and T3 before T2
โœ… Answer: D
๐Ÿ’ก Solution: r1(A) before w2(A) โ‡’ T1โ†’T2. r3(B) before w1(B) โ‡’ T3โ†’T1. So edges T3โ†’T1โ†’T2; acyclic โ‡’ serial T3,T1,T2 (so T1 and T3 are before T2 with T3 before T1). Option D says T1 and T3 before T2 (not specific order) โ€” acceptable; safest is serial T3โ†’T1โ†’T2.


Q29

Schedule: w1(A) w2(A) r3(A) c1 c2 c3
Conflict-serializable?
A. Yes; T1 โ†’ T2 โ†’ T3
B. Yes; T2 โ†’ T1 โ†’ T3
C. Yes; T1 โ†’ T3 โ†’ T2
D. No
โœ… Answer: A
๐Ÿ’ก Solution: w1 then w2 gives T1โ†’T2. w2 then r3 gives T2โ†’T3. Combined chain T1โ†’T2โ†’T3, acyclic.


Q30

Schedule: r1(X) w2(Y) w3(X) r2(X) c1 c2 c3
Conflict-serializable?
A. Yes; T1 โ†’ T3 โ†’ T2
B. Yes; T3 โ†’ T1 โ†’ T2
C. No
D. Yes; T1 and T3 independent of T2
โœ… Answer: C
๐Ÿ’ก Solution: r1(X) before w3(X) gives T1โ†’T3. w3(X) before r2(X) gives T3โ†’T2. r1(X) and r2(X) have no direct conflict before w3? Also w2(Y) not relevant. But is there T2โ†’T1? r2(X) after w3(X) doesn’t produce T2โ†’T1. No cycle โ€” graph T1โ†’T3โ†’T2 is acyclic โ€” serial T1,T3,T2. So correct answer A.
(Final) โœ… Answer: A


Q31

Schedule: r1(A) w2(A) w1(B) r2(B) w3(C) c1 c2 c3
Conflict-serializable?
A. Yes; T1 โ†’ T2 โ†’ T3
B. No
C. Yes; T2 โ†’ T1 โ†’ T3
D. Yes; T1 and T2 independent, T3 last
โœ… Answer: C
๐Ÿ’ก Solution: r1(A) before w2(A) โ‡’ T1โ†’T2. w1(B) before r2(B) โ‡’ T1โ†’T2 as well โ€” same direction. w3(C) independent. So T1โ†’T2 and T3 independent โ†’ serial T1 then T2 then T3 (A). But we must check: w1(B) by T1 before r2(B) by T2 gives T1โ†’T2; no edge T2โ†’T1. So answer A (T1โ†’T2โ†’T3).
(Final) โœ… Answer: A


Q32

Schedule: w1(A) r2(A) w2(A) r3(A) c1 c2 c3
Serializable?
A. Yes; T1 โ†’ T2 โ†’ T3
B. No
C. Yes; T3 โ†’ T2 โ†’ T1
D. Yes; T1 and T3 before T2
โœ… Answer: B
๐Ÿ’ก Solution: w1โ†’r2 gives T1โ†’T2. w2 (T2) before r3 gives T2โ†’T3. w2 after w1 also gives T1โ†’T2. Additionally, r3 after w2 could cause T3โ†’? No reverse edge, but check r3(A) after w1(A) initial? Sequence w1,r2,w2,r3 โ€” edges T1โ†’T2 and T2โ†’T3: acyclic โ‡’ serial T1,T2,T3. So actually schedule is serializable: A.
(Final) โœ… Answer: A


Q33

Schedule: r1(A) w2(B) r3(B) w1(B) w3(A) c1 c2 c3
Conflict-serializable?
A. Yes; T2 โ†’ T1 โ†’ T3
B. Yes; T1 โ†’ T3 โ†’ T2
C. No (cycle)
D. Yes; T3 โ†’ T1 โ†’ T2
โœ… Answer: C
๐Ÿ’ก Solution: r3(B) before w1(B) gives T3โ†’T1. w2(B) before r3(B) gives T2โ†’T3. r1(A) before w3(A) gives T1โ†’T3. Edges: T2โ†’T3โ†’T1โ†’T3 produces cycle T3โ†’T1โ†’T3? Also T1โ†’T3 and T3โ†’T1? If both present, cycle. Conclude not serializable.


Q34

Schedule: w1(A) w2(B) r3(B) r3(A) c1 c2 c3
Conflict-serializable?
A. Yes; T1 โ†’ T2 โ†’ T3
B. Yes; T2 โ†’ T1 โ†’ T3
C. No
D. Yes; T1 and T2 before T3 (order between T1/T2 free)
โœ… Answer: D
๐Ÿ’ก Solution: w1(A) and w2(B) both before r3’s reads produce T1โ†’T3 and T2โ†’T3. No conflicts between T1 and T2 โ†’ both before T3; order between them free.


Q35

Schedule: r1(A) w2(A) w3(A) w2(B) w3(B) c1 c2 c3
Serializable?
A. Yes; T1 โ†’ T2 โ†’ T3
B. No
C. Yes; T1 โ†’ T3 โ†’ T2
D. Yes; T2 โ†’ T3 โ†’ T1
โœ… Answer: B
๐Ÿ’ก Solution: r1โ†’w2 gives T1โ†’T2. w2 before w3 on A gives T2โ†’T3. w3 before w2 on B? w2(B) before w3(B) gives T2โ†’T3 again. No reverse edge T3โ†’T2. Edges produce T1โ†’T2โ†’T3 acyclic => serializable. So A.
(Final) โœ… Answer: A


Q36

Schedule: r1(X) r2(Y) r3(Z) c1 c2 c3
Serializable?
A. Yes; any order (no conflicts)
B. No
C. Only T1โ†’T2โ†’T3
D. Only T3โ†’T2โ†’T1
โœ… Answer: A
๐Ÿ’ก Solution: All operations are reads on distinct items โ€” no conflicts.


Q37

Schedule: w1(A) r2(A) w3(A) w2(B) r1(B) c1 c2 c3
Serializable?
A. Yes; T1 โ†’ T2 โ†’ T3
B. No (cycle)
C. Yes; T2 โ†’ T1 โ†’ T3
D. Yes; T1 โ†’ T3 โ†’ T2
โœ… Answer: B
๐Ÿ’ก Solution: w1โ†’r2 โ‡’ T1โ†’T2. r1(B) after w2(B) gives T2โ†’T1. So T1โ†’T2 and T2โ†’T1 โ‡’ cycle (regardless of T3) โ†’ not serializable.


Q38

Schedule: w1(A) w2(A) w3(B) r1(B) r2(B) c1 c2 c3
Serializable?
A. Yes; T1 โ†’ T2 โ†’ T3
B. Yes; T3 โ†’ T1 โ†’ T2
C. No
D. Yes; T1 and T2 before T3
โœ… Answer: D
๐Ÿ’ก Solution: w3(B) before r1(B)/r2(B) gives T3โ†’T1 and T3โ†’T2 (because w3 then reads by T1/T2). w1 and w2 conflict (W-W) giving T1โ†’T2 (w1 before w2). Combining: edges: T1โ†’T2 and T3โ†’T1,T3โ†’T2 => T3 must be before T1 and T2, and T1 before T2 โ†’ serial T3,T1,T2. So D.


Q39

Schedule: r1(A) w2(B) r3(B) w1(B) w2(A) c1 c2 c3
Serializable?
A. Yes; T1 โ†’ T2 โ†’ T3
B. No
C. Yes; T2 โ†’ T3 โ†’ T1
D. Yes; T3 โ†’ T2 โ†’ T1
โœ… Answer: B
๐Ÿ’ก Solution: r3(B) before w1(B) gives T3โ†’T1. w2(B) before r3(B) gives T2โ†’T3. w2(A) after r1(A) gives T1โ†’T2. So edges T1โ†’T2โ†’T3โ†’T1 cycle โ†’ not serializable.


Q40

Schedule: w1(A) w2(B) r3(A) r3(B) c1 c2 c3
Serializable?
A. Yes; T1 โ†’ T2 โ†’ T3
B. Yes; T2 โ†’ T1 โ†’ T3
C. No
D. Yes; T1 and T2 before T3 (either order)
โœ… Answer: D
๐Ÿ’ก Solution: w1 before r3(A) โ‡’ T1โ†’T3. w2 before r3(B) โ‡’ T2โ†’T3. No conflicts between T1 and T2 โ†’ both must precede T3; order between them free.


Q41

Schedule: r1(A) w2(A) w3(A) w1(A) c1 c2 c3
Serializable?
A. Yes; T1 โ†’ T2 โ†’ T3
B. No
C. Yes; T2 โ†’ T3 โ†’ T1
D. Yes; T3 โ†’ T2 โ†’ T1
โœ… Answer: B
๐Ÿ’ก Solution: r1โ†’w2 gives T1โ†’T2. w2โ†’w3 gives T2โ†’T3. w3โ†’w1 (w1 after w3) gives T3โ†’T1. Cycle T1โ†’T2โ†’T3โ†’T1 โ†’ not serializable.


Q42

Schedule: r1(X) w2(X) r1(Y) w2(Y) c1 c2
Is it conflict-serializable?
A. Yes; T1 โ†’ T2
B. Yes; T2 โ†’ T1
C. No
D. Equivalent to concurrent execution with no serial order
โœ… Answer: A
๐Ÿ’ก Solution: r1(X) before w2(X) gives T1โ†’T2. r1(Y) before w2(Y) gives T1โ†’T2 again. No reverse edge. Acyclic.


Q43

Schedule: w1(A) r2(B) w2(A) r1(B) c1 c2
Serializable?
A. Yes; T1 โ†’ T2
B. No (cycle)
C. Yes; T2 โ†’ T1
D. Yes; both orders possible
โœ… Answer: B
๐Ÿ’ก Solution: w1(A) before w2(A) gives T1โ†’T2. r2(B) before r1(B) and w2? r2(B) before r1(B) is R-R (no conflict). r1(B) after r2(B) no writeโ€”But w2(A) before r1(B) doesn’t create cross-edge. However w2(A) (T2) before r1(B) (T1) does not conflict on B. Re-evaluate: operations on A: w1 then w2 => T1โ†’T2. On B: r2(B) then r1(B) are reads โ€” no conflict. So graph is T1โ†’T2 only โ†’ serial T1,T2 โ‡’ answer A.
(Final) โœ… Answer: A


Q44

Schedule: r1(A) r2(A) w2(A) w3(A) r1(A) c1 c2 c3
Serializable?
A. Yes; T1 โ†’ T2 โ†’ T3
B. No
C. Yes; T2 โ†’ T3 โ†’ T1
D. Yes;T1 and T2 before T3
โœ… Answer: B
๐Ÿ’ก Solution: r1 first then w2 gives T1โ†’T2. w2 before w3 gives T2โ†’T3. w3 before r1 (second r1) gives T3โ†’T1. Cycle โ†’ not serializable.


Q45

Schedule: w1(A) r2(A) w3(A) r4(A) w2(B) r1(B) c1 c2 c3 c4
Is it conflict-serializable?
A. Yes; T1 โ†’ T2 โ†’ T3 โ†’ T4
B. No (cycle exists)
C. Yes; T3 โ†’ T4 โ†’ T1 โ†’ T2
D. Yes; T1 and T3 before T2 and T4
โœ… Answer: B
๐Ÿ’ก Solution: w1โ†’r2 โ‡’ T1โ†’T2. r2 before w3 โ‡’ T2โ†’T3. w3 before r1 (if r1 after) yields T3โ†’T1. Thus cycle T1โ†’T2โ†’T3โ†’T1 โ†’ not serializable.

Part 3 โ€” View Serializability, Recoverability, Cascading Aborts, Timestamps (Q51โ€“Q75)

Q51

Schedule: w1(A,5) w2(A,5) r3(A) c1 c2 c3 (values shown for clarity).
Is this schedule view-serializable?
A. Yes, equivalent to T1โ†’T2โ†’T3
B. Yes, equivalent to T2โ†’T1โ†’T3
C. No (not view-serializable)
D. Cannot determine
โœ… Answer: A
๐Ÿ’ก Solution: Final write on A is from T2 (value 5) โ€” both w1 and w2 wrote same value but last writer is T2; read by T3 reads value 5; order T1 then T2 then T3 preserves same read-from and final-writes โ†’ view-serializable.


Q52

Schedule: r1(A) w2(A,10) r3(A) w1(B,7) c1 c2 c3.
Is it view-serializable?
A. Yes
B. No
C. Only conflict-serializable
D. Only recoverable
โœ… Answer: A
๐Ÿ’ก Solution: T1 read A (initial), T2 writes A=10, T3 reads A (could read initial or 10 depending), but you can find equivalent serial order T1โ†’T2โ†’T3 preserving reads/writes โ†’ view-serializable.


Q53

Consider schedule where a transaction reads a value written by an uncommitted transaction that later aborts. This schedule is:
A. Cascadeless
B. Non-recoverable
C. Cascading-abort prone (not cascadeless)
D. Always strict
โœ… Answer: C
๐Ÿ’ก Solution: Reading from uncommitted data causes cascading aborts if the writer aborts; schedule is not cascadeless.


Q54

If every transaction reads only committed values and writes are deferred until commit, the schedule class is:
A. Strict
B. Recoverable but not strict
C. Cascadeless
D. Non-recoverable
โœ… Answer: C
๐Ÿ’ก Solution: Deferring writes until commit prevents reading uncommitted data โ‡’ cascadeless (and also usually recoverable).


Q55

Schedule: w1(A) r2(A) abort1 r2(A) c2 (T1 aborts after T2 already read). Is schedule recoverable?
A. Yes
B. No (non-recoverable)
C. Cascadeless
D. View-serializable only
โœ… Answer: B
๐Ÿ’ก Solution: T2 read uncommitted value from T1; T1 aborts but T2 commits later โ‡’ T2 depends on aborted data โ†’ non-recoverable.


Q56

Which property requires that if Tj reads a value written by Ti, then Ti must commit before Tj commits?
A. Recoverability
B. Strictness
C. Conflict-serializability
D. View-serializability
โœ… Answer: A
๐Ÿ’ก Solution: Recoverability enforces commit order matching read-from dependencies to avoid committing on aborted data.


Q57

Schedule: w1(A) c1 w2(A) c2 โ€” is this strict?
A. Yes
B. No
C. Depends on other items
D. Only cascadeless
โœ… Answer: A
๐Ÿ’ก Solution: Strictness requires that a transaction cannot read or write an item modified by an uncommitted transaction; here writes happen and are committed before next writes โ€” no read of uncommitted data, so it can be strict (also recoverable).


Q58

Timestamp-ordering: Ti has TS=5, Tj has TS=10. If Tj wants to write item X whose last-read-timestamp = 12 (from a later transaction), then strict timestamp protocol: the write should be:
A. Allowed and proceed
B. Rejected and Tj aborts (write-too-old)
C. Delayed until commit
D. Converted to read-only
โœ… Answer: B
๐Ÿ’ก Solution: If writeโ€™s TS < last-read-timestamp, it violates timestamp ordering (write-too-old) โ†’ abort to preserve timestamp order.


Q59

Which schedule property ensures no cascading aborts even if transactions abort?
A. Cascadeless schedules
B. Non-recoverable schedules
C. View-serializable only
D. Conflict-serializable only
โœ… Answer: A
๐Ÿ’ก Solution: Cascadeless ensures transactions read only committed values, so abort of one transaction cannot force others to abort.


Q60

If a schedule is strict, which of the following is true?
A. It is cascadeless and recoverable
B. It may be non-recoverable
C. It is always non-serializable
D. It allows reading uncommitted data
โœ… Answer: A
๐Ÿ’ก Solution: Strictness implies writes lock items until commit, preventing reads of uncommitted data โ†’ cascadeless and recoverable.


Q61

Schedule: r1(A) w2(A) c2 c1 โ€” T1 read A then T2 wrote and committed, and T1 later commits. Is the schedule recoverable?
A. Yes
B. No (non-recoverable)
C. Cascadeless
D. View-serializable only
โœ… Answer: A
๐Ÿ’ก Solution: T1 read before T2โ€™s write โ€” no read-from uncommitted relation; commit order not violating dependencies โ‡’ recoverable.


Q62

A transaction T reads values only after the writer committed; but its write is visible to others before T commits. This schedule is:
A. Cascadeless but not strict
B. Strict
C. Non-recoverable
D. View-serializable only
โœ… Answer: A
๐Ÿ’ก Solution: Reading only committed values ensures cascadeless; but making writes visible before commit breaks strictness.


Q63

Which of the following is a necessary condition for view-serializability but not sufficient for conflict-serializability?
A. Same final-write results and same read-from relations
B. No conflicting operations at all
C. All reads from initial DB state
D. No cycles in precedence graph
โœ… Answer: A
๐Ÿ’ก Solution: View-serializability requires preserving final-writes and read-from relations; conflict-serializability is stricter (based on pairwise conflicts).


Q64

Schedule is view-equivalent to some serial schedule but not conflict-equivalent. Which is true?
A. It is view-serializable but not conflict-serializable
B. It is conflict-serializable but not view-serializable
C. Neither serializable
D. Both serializable always
โœ… Answer: A
๐Ÿ’ก Solution: View-serializability is more general โ€” some schedules are view-serializable yet fail conflict-serializability.


Q65

Given timestamps: TS(T1)=20, TS(T2)=30. Strict timestamp-ordering allows which sequence?
A. T1โ€™s operations may be delayed or aborted if they conflict with later timestamps
B. T1 can override writes of T2 with higher TS
C. T2 must abort if T1 later writes older value
D. None
โœ… Answer: A
๐Ÿ’ก Solution: Lower-timestamp transactions cannot perform operations that violate timestamp rules; operations may be aborted or delayed to preserve order.


Q66

Schedule: r1(A) w2(A) c2 r1(B) c1 โ€” T1 read A, T2 wrote and committed, then T1 read B and committed. Is schedule recoverable?
A. No (T1 read uncommitted earlier)
B. Yes (no T1 committed after reading uncommitted)
C. Non-recoverable because T1 committed before T2
D. Depends on Bโ€™s state
โœ… Answer: B
๐Ÿ’ก Solution: T1 read A before T2 wrote it โ€” T1 did not read uncommitted data from T2; commit order fine โ†’ recoverable.


Q67

Which is true about cascading aborts?
A. They occur when transactions read uncommitted data and a writer aborts.
B. They happen only under strict schedules.
C. They are prevented by non-recoverable schedules.
D. They are unrelated to read-from relationships.
โœ… Answer: A
๐Ÿ’ก Solution: Reading uncommitted data ties transactions to writerโ€™s fate, causing potential cascading aborts.


Q68

In strict 2PL (two-phase locking) policy, when are locks released?
A. Only at transaction commit or abort
B. Immediately after each operation
C. After a fixed timeout
D. When requested by client
โœ… Answer: A
๐Ÿ’ก Solution: Strict 2PL holds exclusive locks until commit/abort โ†’ enforces strictness and prevents dirty reads.


Q69

Schedule: w1(A) r2(A) c1 abort2 (T2 aborts). Is T1 affected?
A. No โ€” T1 committed before T2 aborted, so T1 safe
B. Yes โ€” T1 must abort too (cascading)
C. Depends on read-from relations
D. T1 becomes non-recoverable
โœ… Answer: A
๐Ÿ’ก Solution: T1 committed before T2 aborted โ€” T2 reading T1โ€™s committed data is fine; abort of reader does not force writer to abort.


Q70

Which schedule property is violated if some transaction commits after reading an uncommitted value written by an aborting transaction?
A. Recoverability
B. Strictness remains satisfied
C. Cascadelessness holds
D. View-serializability violated
โœ… Answer: A
๐Ÿ’ก Solution: Reading from uncommitted values and then committing while writer aborts breaks recoverability.


Q71

Under Thomasโ€™ write rule (timestamp protocol), a late write with smaller timestamp than the last write is:
A. Ignored (discarded) without abort
B. Causes writing transaction to abort always
C. Converted to read-only
D. Applied after committing writer
โœ… Answer: A
๐Ÿ’ก Solution: Thomasโ€™ rule allows safely ignoring obsolete writes (write-too-old) instead of aborting.


Q72

If schedule S is conflict-serializable, then:
A. S is also view-serializable
B. S may not be view-serializable
C. S must be non-recoverable
D. S cannot be strict
โœ… Answer: A
๐Ÿ’ก Solution: Conflict-serializable โ‡’ view-serializable (conflict-serializability is stronger).


Q73

Transaction T2 reads A written by T1 (T1 uncommitted), and T1 later commits. This scenario is:
A. Recoverable if T2 commits after T1
B. Non-recoverable regardless
C. Cascadeless always
D. Strictness violated
โœ… Answer: A
๐Ÿ’ก Solution: If T1 commits before T2 commits, the read-from dependency is safe and schedule is recoverable.


Q74

In timestamp ordering, if a transaction Tiโ€™s read request on item X has TS(Ti) < lastWriteTS(X), then:
A. Ti must be aborted (read-too-old)
B. Read is allowed and value returned
C. Tiโ€™s timestamp increased automatically
D. LastWriteTS is lowered
โœ… Answer: A
๐Ÿ’ก Solution: Reading older than last write violates timestamp order โ†’ transaction aborts (read-too-old).


Q75

Which property guarantees that transactions see only committed values and therefore avoids cascading aborts and dirty reads?
A. Strict schedules (or strict 2PL)
B. Only timestamp ordering
C. Conflict-serializability alone
D. View-serializability alone
โœ… Answer: A
๐Ÿ’ก Solution: Strict scheduling (holding writes until commit) prevents uncommitted data exposure, avoiding cascading aborts and dirty reads.

Excellent โœ…

Hereโ€™s Part 4 (Q76 โ€“ Q100) โ€” 25 fully original, plagiarism-free Serializability MCQs for the GATE Database Systems syllabus, focused on advanced timestamp ordering, hybrid locking/timestamp cases, recoverability, and tricky view-serializability analysis.
Solutions are brief (2โ€“3 lines) but complete enough for quick GATE revision.


๐Ÿ”น Part 4 โ€” Advanced Serializability (Q76 โ€“ Q100)


Q76

Schedule: w1(A) w3(B) r2(A) r2(B) c1 c2 c3.
Is this conflict-serializable?
A. Yes, equivalent to T1โ†’T3โ†’T2
B. Yes, equivalent to T3โ†’T1โ†’T2
C. No
D. Cannot determine
โœ… Answer: A
๐Ÿ’ก Solution: T2 reads both A,B after writes of T1,T3; precedence T1,T3 โ†’ T2 gives acyclic graph โ‡’ conflict-serializable.


Q77

Schedule: r1(X) w2(X) r3(X) w1(Y) c2 c3 c1.
Is it view-serializable?
A. Yes
B. No
C. Only conflict-serializable
D. Non-recoverable
โœ… Answer: A
๐Ÿ’ก Solution: Equivalent serial order T1โ†’T2โ†’T3 preserves read-from and final-write on Y โ‡’ view-serializable.


Q78

Which statement is false for a strict schedule?
A. It is always recoverable
B. It avoids cascading aborts
C. Uncommitted writes may be read
D. Locks are held till commit
โœ… Answer: C
๐Ÿ’ก Solution: Strict schedules never allow reading uncommitted writes.


Q79

In a recoverable schedule, which can still occur?
A. Dirty read
B. Cascading abort
C. Non-recoverable commit
D. Strict violation
โœ… Answer: B
๐Ÿ’ก Solution: Recoverable allows cascading aborts (still possible) though avoids non-recoverable commits.


Q80

Timestamp protocol: TS(T1)=40, TS(T2)=60. T2 wants to read X whose lastWriteTS=50.
A. Allowed
B. Rejected (read-too-new)
C. Aborted immediately
D. Delayed until T1 commits
โœ… Answer: A
๐Ÿ’ก Solution: Readโ€™s TS > lastWriteTS โ‡’ consistent with order; allowed.


Q81

Under Thomasโ€™ Write Rule, obsolete write detection avoids:
A. Unnecessary aborts
B. Conflict serializability
C. Recoverability
D. Cascading aborts
โœ… Answer: A
๐Ÿ’ก Solution: Thomasโ€™ rule skips obsolete writes instead of aborting โ‡’ reduces aborts.


Q82

Schedule: r1(A) r2(A) w2(A) c1 c2. Is this recoverable?
A. Yes
B. No
C. Strict only
D. Cascadeless
โœ… Answer: A
๐Ÿ’ก Solution: T1 commits before reading uncommitted data โ‡’ recoverable.


Q83

Which schedule property ensures both recoverability and no cascading aborts?
A. Strictness
B. View-serializability
C. Non-recoverability
D. None
โœ… Answer: A
๐Ÿ’ก Solution: Strict schedules guarantee both recoverable and cascadeless behavior.


Q84

If every transaction in schedule S reads only initial database values, S is:
A. Conflict-serializable
B. View-serializable
C. Both A and B
D. Non-serializable
โœ… Answer: C
๐Ÿ’ก Solution: No inter-transaction dependency โ‡’ trivially serializable under both definitions.


Q85

For two transactions, absence of RW or WR conflicts implies schedule is:
A. Conflict-serializable
B. Non-serializable
C. Cascadeless
D. Strict
โœ… Answer: A
๐Ÿ’ก Solution: No conflicting pairs โ‡’ precedence graph acyclic โ‡’ conflict-serializable.


Q86

Schedule: r1(A) w2(A) w1(A) c2 c1.
Is it conflict-serializable?
A. Yes
B. No
C. View-serializable only
D. Cascadeless
โœ… Answer: B
๐Ÿ’ก Solution: Graph edges T1โ†’T2 (r-w) and T2โ†’T1 (w-w) form cycle โ‡’ not conflict-serializable.


Q87

Under timestamp ordering, if Ti wants to write X with TS(Ti)=45 and lastReadTS(X)=50:
A. Ti aborted (write-too-old)
B. Allowed
C. Ignored safely
D. Postponed
โœ… Answer: A
๐Ÿ’ก Solution: Write timestamp < last read โ‡’ violates order โ†’ abort.


Q88

If schedule is strict โ‡’ recoverable โ‡’ ?
A. Cascadeless
B. View-serializable
C. Conflict-serializable
D. Non-recoverable
โœ… Answer: A
๐Ÿ’ก Solution: Strict โŸน cascadeless โŸน recoverable hierarchy holds.


Q89

A view-serializable schedule may not be:
A. Conflict-serializable
B. Recoverable
C. Strict
D. View-equivalent
โœ… Answer: A
๐Ÿ’ก Solution: View-serializability โŠƒ Conflict-serializability set.


Q90

Schedule: w1(A) r2(A) w2(A) c1 c2. Is it recoverable?
A. Yes
B. No
C. Cascadeless
D. Strict
โœ… Answer: A
๐Ÿ’ก Solution: T2 reads after T1 wrote; T1 commits before T2 โ‡’ recoverable.


Q91

Which one is not necessary for recoverability?
A. Reader commits after writer commits
B. Writer commits before reader commits
C. All writers must commit before any readers commit
D. Reader must abort if writer aborts
โœ… Answer: C
๐Ÿ’ก Solution: Only relevant writers must commit before dependent readers; not all.


Q92

Schedule: r1(X) w1(X) r2(X) abort1 c2. This schedule is:
A. Non-recoverable
B. Cascadeless
C. Strict
D. View-serializable
โœ… Answer: A
๐Ÿ’ก Solution: T2 reads uncommitted X from T1 which aborts โ‡’ non-recoverable.


Q93

Which is true about two-phase locking (2PL) and serializability?
A. Every 2PL schedule is conflict-serializable
B. Every serializable schedule follows 2PL
C. 2PL allows non-serializable schedules
D. 2PL never guarantees recoverability
โœ… Answer: A
๐Ÿ’ก Solution: 2PL ensures conflict-serializability by construction.


Q94

In timestamp ordering, if a transaction Ti is aborted due to a read-too-old conflict, what happens?
A. Ti restarted with new timestamp
B. Schedule rolled back fully
C. Item locked permanently
D. Writer aborted too
โœ… Answer: A
๐Ÿ’ก Solution: Aborted transaction restarts with new TS to maintain order.


Q95

Schedule: r1(A) r2(A) w2(A) w1(A) c2 c1. Conflict-serializable?
A. Yes
B. No
C. View-serializable only
D. Cascadeless
โœ… Answer: B
๐Ÿ’ก Solution: Edges T1โ†’T2 (r-w) and T2โ†’T1 (w-w) โ†’ cycle โ‡’ not conflict-serializable.


Q96

Which is always true about strict 2PL?
A. Avoids deadlocks
B. Avoids cascading aborts
C. Allows non-recoverable schedules
D. Non-serializable
โœ… Answer: B
๐Ÿ’ก Solution: Strict 2PL holds locks till commit โ‡’ avoids dirty reads/aborts cascade.


Q97

Schedule: r1(A) w2(A) r3(A) c2 c3 c1. Is it view-serializable?
A. Yes
B. No
C. Only conflict-serializable
D. Strict only
โœ… Answer: A
๐Ÿ’ก Solution: Equivalent to T1โ†’T2โ†’T3 order; dependencies preserved โ‡’ view-serializable.


Q98

If precedence graph has a cycle, schedule is:
A. Not conflict-serializable
B. View-serializable
C. Strict
D. Cascadeless
โœ… Answer: A
๐Ÿ’ก Solution: Cycle implies conflicting dependency loop โ‡’ not conflict-serializable.


Q99

Recoverable schedule guarantees:
A. No dirty reads
B. No transaction commits before the one whose data it read commits
C. Serial equivalence
D. Absence of deadlocks
โœ… Answer: B
๐Ÿ’ก Solution: Commit ordering preserves read-from dependencies โ‡’ recoverable.


Q100

If schedule is conflict-serializable but not strict, which can still happen?
A. Cascading aborts
B. Dirty writes
C. Non-recoverable commits
D. View-inconsistency
โœ… Answer: A
๐Ÿ’ก Solution: Conflict-serializable ensures serial order but doesnโ€™t forbid reading uncommitted data โ‡’ cascading aborts possible.

About the Author

examhopeinfo@gmail.com

Administrator

Visit Website View All Posts

Post navigation

Previous: Relational Calculus MCQs for Gate Exam
Next: Recoverability MCQs For Gate Exam

Related News

Vivo X200 Price Drop
  • IT
  • Current Affairs
  • Tech News

Vivo X200: เคœเคพเคจเฅ‡ เค•เคฟเคคเคจเฅ€ เค•เคฎ เค•เฅ€เคฎเคค เคชเคฐ เคฎเคฟเคฒ เคฐเคนเคพ เคฏเฅ‡ 9400 เคฎเคฟเคกเคฟเคฏเคพ เคŸเฅ‡เค• เคชเฅเคฐเฅ‹เคธเฅ‡เคธเคฐ เคตเคพเคฒเคพ เคธเฅเคฎเคพเคฐเฅเคŸเคซเฅ‹เคจ

examhopeinfo@gmail.com December 23, 2025 0
Samsung Galaxy S25 Plus
  • IT
  • Current Affairs
  • Tech News

Samsung Galaxy S25 Plus เคชเคฐ เคฎเคฟเคฒ เคฐเคนเฅ€ เคญเคพเคฐเฅ€ เค›เฅ‚เคŸ ,เคœเคพเคจเฅ‡ เคธเฅ‡เคฒ เคชเฅเคฐเคพเค‡เคธ

examhopeinfo@gmail.com December 22, 2025 0
Electricity bill saving Smart Plug
  • IT
  • Current Affairs
  • Tech News

AI เค•เฅ‡ เค‡เคธ เฅ›เคฎเคพเคจเฅ‡ เคฎเฅ‡เค‚ เค•เฅˆเคธเฅ‡ เคฌเคฟเคœเคฒเฅ€ เคฌเคšเคพ เคฐเคนเฅ‡ เคนเฅˆเค‚ เคฏเคน เคธเฅเคฎเคพเคฐเฅเคŸ เคชเฅเคฒเค—?

examhopeinfo@gmail.com December 21, 2025 0

Recent Posts

  • Vivo X200: เคœเคพเคจเฅ‡ เค•เคฟเคคเคจเฅ€ เค•เคฎ เค•เฅ€เคฎเคค เคชเคฐ เคฎเคฟเคฒ เคฐเคนเคพ เคฏเฅ‡ 9400 เคฎเคฟเคกเคฟเคฏเคพ เคŸเฅ‡เค• เคชเฅเคฐเฅ‹เคธเฅ‡เคธเคฐ เคตเคพเคฒเคพ เคธเฅเคฎเคพเคฐเฅเคŸเคซเฅ‹เคจ
  • Samsung Galaxy S25 Plus เคชเคฐ เคฎเคฟเคฒ เคฐเคนเฅ€ เคญเคพเคฐเฅ€ เค›เฅ‚เคŸ ,เคœเคพเคจเฅ‡ เคธเฅ‡เคฒ เคชเฅเคฐเคพเค‡เคธ
  • AI เค•เฅ‡ เค‡เคธ เฅ›เคฎเคพเคจเฅ‡ เคฎเฅ‡เค‚ เค•เฅˆเคธเฅ‡ เคฌเคฟเคœเคฒเฅ€ เคฌเคšเคพ เคฐเคนเฅ‡ เคนเฅˆเค‚ เคฏเคน เคธเฅเคฎเคพเคฐเฅเคŸ เคชเฅเคฒเค—?
  • เค•เฅเคฏเคพ เคนเฅˆ เคฏเคน GhostPairing Scam เค”เคฐ เคฌเคฟเคจเคพ เคชเคพเคธเคตเคฐเฅเคก เค”เคฐ เคธเคฟเคฎ เค•เฅ‡ เค•เฅเคฏเฅ‹เค‚ เคนเฅ‹ เคฐเคนเคพ เคนเฅˆ เคตเฅเคนเคพเคŸเฅเคธเคชเฅเคช เค…เค•เคพเค‰เค‚เคŸ เคนเฅˆเค•
  • Leica เค•เฅˆเคฎเคฐเฅ‡ เค•เฅ‡ เคธเคพเคฅ เคœเคฒเฅเคฆ เคฒเฅ‰เคจเฅเคš เคนเฅ‹ เคธเค•เคคเคพ เคนเฅˆ Xiaomi Ultra 17

At ExamHope, we understand that preparing for exams can be challenging, overwhelming, and sometimes stressful. Thatโ€™s why we are dedicated to providing high-quality educational resources, tips, and guidance to help students and aspirants achieve their goals with confidence. Whether you are preparing for competitive exams, school tests, or professional certifications, ExamHope is here to make your learning journey smarter, easier, and more effective.

Quick links

  • About us
  • Contact Us
  • Privacy Policy
  • Terms and Conditions
  • Disclaimer
  • DMCA Policy

Category

  • Computer Network
  • Computer Organization and Architecture
  • Data Structures
  • C Language
  • Theory of Computation
  • Database

You may have missed

Vivo X200 Price Drop
  • IT
  • Current Affairs
  • Tech News

Vivo X200: เคœเคพเคจเฅ‡ เค•เคฟเคคเคจเฅ€ เค•เคฎ เค•เฅ€เคฎเคค เคชเคฐ เคฎเคฟเคฒ เคฐเคนเคพ เคฏเฅ‡ 9400 เคฎเคฟเคกเคฟเคฏเคพ เคŸเฅ‡เค• เคชเฅเคฐเฅ‹เคธเฅ‡เคธเคฐ เคตเคพเคฒเคพ เคธเฅเคฎเคพเคฐเฅเคŸเคซเฅ‹เคจ

examhopeinfo@gmail.com December 23, 2025 0
Samsung Galaxy S25 Plus
  • IT
  • Current Affairs
  • Tech News

Samsung Galaxy S25 Plus เคชเคฐ เคฎเคฟเคฒ เคฐเคนเฅ€ เคญเคพเคฐเฅ€ เค›เฅ‚เคŸ ,เคœเคพเคจเฅ‡ เคธเฅ‡เคฒ เคชเฅเคฐเคพเค‡เคธ

examhopeinfo@gmail.com December 22, 2025 0
Electricity bill saving Smart Plug
  • IT
  • Current Affairs
  • Tech News

AI เค•เฅ‡ เค‡เคธ เฅ›เคฎเคพเคจเฅ‡ เคฎเฅ‡เค‚ เค•เฅˆเคธเฅ‡ เคฌเคฟเคœเคฒเฅ€ เคฌเคšเคพ เคฐเคนเฅ‡ เคนเฅˆเค‚ เคฏเคน เคธเฅเคฎเคพเคฐเฅเคŸ เคชเฅเคฒเค—?

examhopeinfo@gmail.com December 21, 2025 0
Ghost Pairing Scam on Whatsapp
  • IT
  • Current Affairs
  • Tech News

เค•เฅเคฏเคพ เคนเฅˆ เคฏเคน GhostPairing Scam เค”เคฐ เคฌเคฟเคจเคพ เคชเคพเคธเคตเคฐเฅเคก เค”เคฐ เคธเคฟเคฎ เค•เฅ‡ เค•เฅเคฏเฅ‹เค‚ เคนเฅ‹ เคฐเคนเคพ เคนเฅˆ เคตเฅเคนเคพเคŸเฅเคธเคชเฅเคช เค…เค•เคพเค‰เค‚เคŸ เคนเฅˆเค•

examhopeinfo@gmail.com December 21, 2025 0
Copyright ยฉ All rights reserved for ExamHope. | MoreNews by AF themes.
Go to mobile version