Skip to content
ExamHope Logo

examhope

Primary Menu
  • Digital Logic
    • Arithmetic Operations
    • Asynchronous/Ripple Counters
    • Basic Gates
    • Boolean Algebraic Theorems
    • Codes
  • Data Structures
    • Binary Heaps
    • Binary Search
    • Binary Search Trees
    • Binary Tree
    • Binary Tree Sort
    • Bipartite Graphs
    • Complete Graph
  • Theory of Computation
    • Finite Automata
    • Finite Automaton First Example
  • Current Affairs
    • Sports News
    • Tech News
    • Bollywood News
    • Daily News
  • Database
  • Computer Network
  • Computer Organization and Architecture
  • C Language
  • Operating Systems
  • Software Engineering
  • Theory of Computation
  • About us
  • Contact Us
  • Privacy Policy
  • DMCA Policy
  • Terms and Conditions
  • Home
  • IT
  • Data Structures
  • Representation of Binary Trees in Memory
  • Representation of Binary Trees in Memory
  • Data Structures

Representation of Binary Trees in Memory

examhopeinfo@gmail.com November 12, 2025 3 minutes read
Representation of Binary Trees in Memory

Representation of Binary Trees in Memory

๐ŸŒฒ A Quick Reminder: Whatโ€™s a Binary Tree?

A binary tree looks something like this:

        [A]
       /   \
     [B]   [C]
    /   \
  [D]   [E]

Here:

  • A is the root node (the top of the tree).
  • B and C are children of A.
  • D and E are children of B.

When we draw it, it looks easy to understand. But computers donโ€™t have โ€œbranchesโ€ and โ€œcirclesโ€ โ€” they only understand memory cells and pointers.
So we need a way to represent this structure in a way that the computer can handle efficiently.

There are two main ways to represent a binary tree in memory:

  1. Array Representation
  2. Linked Representation

Letโ€™s explore both in a fun and easy way.


๐Ÿงฎ 1. Array Representation

Imagine storing a tree in an array โ€” just like keeping elements in a list where each position has a fixed index.

Hereโ€™s how it works:

  • The root node is stored at index 1 (not 0, to make math easy).
  • For any node stored at position i:
  • The left child is stored at position 2 * i
  • The right child is stored at position 2 * i + 1

Letโ€™s see this in action.

๐ŸŒฟ Example Tree:

        [A]
       /   \
     [B]   [C]
    /   \
  [D]   [E]

๐Ÿง  Array Representation:

IndexNode
1A
2B
3C
4D
5E

Now letโ€™s apply the formula:

  • Root A is at index 1
  • Left child of A โ†’ 2 ร— 1 = 2 โ†’ B
  • Right child of A โ†’ 2 ร— 1 + 1 = 3 โ†’ C
  • Left child of B โ†’ 2 ร— 2 = 4 โ†’ D
  • Right child of B โ†’ 2 ร— 2 + 1 = 5 โ†’ E

Thatโ€™s how the positions are calculated!

โœ… Pros:

  • Simple and fast to access any node.
  • Great for complete binary trees (where all levels are filled).

โŒ Cons:

  • Wastes memory when the tree is not full.
    (Because some indices in the array stay empty.)

๐Ÿ”— 2. Linked Representation

Now imagine building the tree using linked nodes, just like a linked list, but with two pointers instead of one.

Each node has three parts:

  1. Data (the value stored in the node)
  2. Left pointer (address of left child)
  3. Right pointer (address of right child)

Itโ€™s like this:

 -------------------------
|  Data  | Left | Right  |
 -------------------------

Each pointer connects one node to another, forming the full binary tree structure.

๐ŸŒฟ Example:

Letโ€™s take the same tree again:

        [A]
       /   \
     [B]   [C]
    /   \
  [D]   [E]

Now letโ€™s imagine how it looks in memory:

   +------+---------+---------+
   |  A   |  B(ptr) |  C(ptr) |
   +------+---------+---------+
          /           \
   +------+---------+---------+
   |  B   |  D(ptr) |  E(ptr) |
   +------+---------+---------+
          /           \
   +------+---------+---------+
   |  D   |  NULL   |  NULL   |
   +------+---------+---------+
   +------+---------+---------+
   |  E   |  NULL   |  NULL   |
   +------+---------+---------+
   +------+---------+---------+
   |  C   |  NULL   |  NULL   |
   +------+---------+---------+

Here:

  • Each โ€œptrโ€ is a memory address pointing to another node.
  • NULL means thereโ€™s no child in that direction.

So, the computer connects these pointers in memory to form the complete structure โ€” just like connecting pieces of a puzzle.


โœ… Pros:

  • No wasted memory, even if the tree is incomplete.
  • Easy to grow or shrink the tree dynamically.
  • Suitable for all kinds of trees (not just complete ones).

โŒ Cons:

  • Takes extra space for storing pointers.
  • Slightly slower to access elements than array representation.

๐Ÿงพ Summary: Array vs Linked Representation

FeatureArray RepresentationLinked Representation
StorageUses array indexesUses pointers
Best forComplete binary treesAny kind of binary tree
Memory useMay waste spaceEfficient memory use
Ease of insertion/deletionHardEasy
Access timeFast (using index)Slower (need to follow links)

๐Ÿ–ผ๏ธ Simple Diagram: Two Ways to Store a Binary Tree

Binary Tree:
        [A]
       /   \
     [B]   [C]
    /   \
  [D]   [E]

-------------------------------
Array Representation:
Index:  1   2   3   4   5
Node : [A] [B] [C] [D] [E]
-------------------------------

Linked Representation:
[A]
 / \
[B] [C]
 / \
[D] [E]
(Each node has pointers: Left โ†’ Right)

About the Author

examhopeinfo@gmail.com

Administrator

Visit Website View All Posts

Post navigation

Previous: Applications of Binary Trees โ€” Data Structures
Next: Representing Lists as Binary Trees โ€” Data Structures

Related News

Linked Representation
  • Linked Representation of a Graph
  • Data Structures

Linked Representation of a Graph

examhopeinfo@gmail.com November 14, 2025 0
Path Matrix
  • Path Matrix
  • Data Structures

Path Matrix

examhopeinfo@gmail.com November 14, 2025 0
Adjacency Matrix
  • Adjacency Matrix
  • Data Structures

Adjacency Matrix

examhopeinfo@gmail.com November 14, 2025 0

Recent Posts

  • Vivo X200: เคœเคพเคจเฅ‡ เค•เคฟเคคเคจเฅ€ เค•เคฎ เค•เฅ€เคฎเคค เคชเคฐ เคฎเคฟเคฒ เคฐเคนเคพ เคฏเฅ‡ 9400 เคฎเคฟเคกเคฟเคฏเคพ เคŸเฅ‡เค• เคชเฅเคฐเฅ‹เคธเฅ‡เคธเคฐ เคตเคพเคฒเคพ เคธเฅเคฎเคพเคฐเฅเคŸเคซเฅ‹เคจ
  • Samsung Galaxy S25 Plus เคชเคฐ เคฎเคฟเคฒ เคฐเคนเฅ€ เคญเคพเคฐเฅ€ เค›เฅ‚เคŸ ,เคœเคพเคจเฅ‡ เคธเฅ‡เคฒ เคชเฅเคฐเคพเค‡เคธ
  • AI เค•เฅ‡ เค‡เคธ เฅ›เคฎเคพเคจเฅ‡ เคฎเฅ‡เค‚ เค•เฅˆเคธเฅ‡ เคฌเคฟเคœเคฒเฅ€ เคฌเคšเคพ เคฐเคนเฅ‡ เคนเฅˆเค‚ เคฏเคน เคธเฅเคฎเคพเคฐเฅเคŸ เคชเฅเคฒเค—?
  • เค•เฅเคฏเคพ เคนเฅˆ เคฏเคน GhostPairing Scam เค”เคฐ เคฌเคฟเคจเคพ เคชเคพเคธเคตเคฐเฅเคก เค”เคฐ เคธเคฟเคฎ เค•เฅ‡ เค•เฅเคฏเฅ‹เค‚ เคนเฅ‹ เคฐเคนเคพ เคนเฅˆ เคตเฅเคนเคพเคŸเฅเคธเคชเฅเคช เค…เค•เคพเค‰เค‚เคŸ เคนเฅˆเค•
  • Leica เค•เฅˆเคฎเคฐเฅ‡ เค•เฅ‡ เคธเคพเคฅ เคœเคฒเฅเคฆ เคฒเฅ‰เคจเฅเคš เคนเฅ‹ เคธเค•เคคเคพ เคนเฅˆ Xiaomi Ultra 17

At ExamHope, we understand that preparing for exams can be challenging, overwhelming, and sometimes stressful. Thatโ€™s why we are dedicated to providing high-quality educational resources, tips, and guidance to help students and aspirants achieve their goals with confidence. Whether you are preparing for competitive exams, school tests, or professional certifications, ExamHope is here to make your learning journey smarter, easier, and more effective.

Quick links

  • About us
  • Contact Us
  • Privacy Policy
  • Terms and Conditions
  • Disclaimer
  • DMCA Policy

Category

  • Computer Network
  • Computer Organization and Architecture
  • Data Structures
  • C Language
  • Theory of Computation
  • Database

You may have missed

Vivo X200 Price Drop
  • IT
  • Current Affairs
  • Tech News

Vivo X200: เคœเคพเคจเฅ‡ เค•เคฟเคคเคจเฅ€ เค•เคฎ เค•เฅ€เคฎเคค เคชเคฐ เคฎเคฟเคฒ เคฐเคนเคพ เคฏเฅ‡ 9400 เคฎเคฟเคกเคฟเคฏเคพ เคŸเฅ‡เค• เคชเฅเคฐเฅ‹เคธเฅ‡เคธเคฐ เคตเคพเคฒเคพ เคธเฅเคฎเคพเคฐเฅเคŸเคซเฅ‹เคจ

examhopeinfo@gmail.com December 23, 2025 0
Samsung Galaxy S25 Plus
  • IT
  • Current Affairs
  • Tech News

Samsung Galaxy S25 Plus เคชเคฐ เคฎเคฟเคฒ เคฐเคนเฅ€ เคญเคพเคฐเฅ€ เค›เฅ‚เคŸ ,เคœเคพเคจเฅ‡ เคธเฅ‡เคฒ เคชเฅเคฐเคพเค‡เคธ

examhopeinfo@gmail.com December 22, 2025 0
Electricity bill saving Smart Plug
  • IT
  • Current Affairs
  • Tech News

AI เค•เฅ‡ เค‡เคธ เฅ›เคฎเคพเคจเฅ‡ เคฎเฅ‡เค‚ เค•เฅˆเคธเฅ‡ เคฌเคฟเคœเคฒเฅ€ เคฌเคšเคพ เคฐเคนเฅ‡ เคนเฅˆเค‚ เคฏเคน เคธเฅเคฎเคพเคฐเฅเคŸ เคชเฅเคฒเค—?

examhopeinfo@gmail.com December 21, 2025 0
Ghost Pairing Scam on Whatsapp
  • IT
  • Current Affairs
  • Tech News

เค•เฅเคฏเคพ เคนเฅˆ เคฏเคน GhostPairing Scam เค”เคฐ เคฌเคฟเคจเคพ เคชเคพเคธเคตเคฐเฅเคก เค”เคฐ เคธเคฟเคฎ เค•เฅ‡ เค•เฅเคฏเฅ‹เค‚ เคนเฅ‹ เคฐเคนเคพ เคนเฅˆ เคตเฅเคนเคพเคŸเฅเคธเคชเฅเคช เค…เค•เคพเค‰เค‚เคŸ เคนเฅˆเค•

examhopeinfo@gmail.com December 21, 2025 0
Copyright ยฉ All rights reserved for ExamHope. | MoreNews by AF themes.
Go to mobile version