Skip to content
ExamHope Logo

Primary Menu
  • Digital Logic
    • Arithmetic Operations
    • Asynchronous/Ripple Counters
    • Basic Gates
    • Boolean Algebraic Theorems
    • Codes
  • Data Structures
    • Binary Heaps
    • Binary Search
    • Binary Search Trees
    • Binary Tree
    • Binary Tree Sort
    • Bipartite Graphs
    • Complete Graph
  • Theory of Computation
    • Finite Automata
    • Finite Automaton First Example
  • About us
  • Contact Us
  • Privacy Policy
  • Terms and Conditions
  • DMCA Policy
  • Home
  • IT
  • Minimization MCQs in Digital Logic For Gate Exam
  • Minimization
  • Digital Logic
  • IT

Minimization MCQs in Digital Logic For Gate Exam

examhopeinfo@gmail.com October 15, 2025
Minimization MCQs in Digital Logic

Minimization MCQs in Digital Logic

Minimization MCQs in Digital Logic

Q1 — Minimize (F(A,B,C)=\sum m(1,2,3,5)).
A) (B\overline{C} + \overline{A}C)
B) (\overline{A}B + AC)
C) (\overline{A}B + \overline{B}C)
D) (A\overline{B} + B C)
Answer: B
Solution: K-map groups (1,3) → (\overline{A}B); (2,3,6?) but given minterms, group (2,3) with AC → minimal: (\overline{A}B + AC).


2

Q2 — Minimize (F = A\overline{B}C + ABC + \overline{A}BC).
A) (BC + A\overline{B}C)
B) (BC + A\overline{B})
C) (C(B + A\overline{B}))
D) (BC + A C)
Answer: C
Solution: Factor (C): (C(A\overline{B} + AB + \overline{A}B) = C(A\overline{B} + B)). So (C(B + A\overline{B})) (can also be written (C(B + A)) only if algebra allows — here final is (C(B + A\overline{B})) minimal).


3

Q3 — Minimize (F(A,B,C,D)=\sum m(0,1,2,3,8,9,10,11)).
A) (\overline{C})
B) (\overline{D})
C) (\overline{B})
D) (\overline{A})
Answer: A
Solution: Minterms correspond to all combinations where (C=0) (0–3 and 8–11) → (F = \overline{C}).


4

Q4 — Simplify (F = A\overline{B} + A B + \overline{A}B).
A) (A + B)
B) (A B)
C) (A \oplus B)
D) (\overline{A} + \overline{B})
Answer: A
Solution: (A\overline{B}+AB = A). Then (A + \overline{A}B = A + B).


5

Q5 — Reduce (F = \overline{A}B\overline{C} + \overline{A}BC + AB\overline{C}).
A) (\overline{A}B + AB\overline{C})
B) (\overline{A}B + A\overline{C})
C) (B\overline{C} + \overline{A}B)
D) (B(\overline{A} + A\overline{C}))
Answer: D
Solution: Factor (B): (B(\overline{A}\overline{C} + \overline{A}C + A\overline{C}) = B(\overline{A} + A\overline{C})).


6

Q6 — Minimize (F(A,B,C)=\sum m(1,3,5,7)).
A) (A \oplus C)
B) (B(C + \overline{C}))
C) (\overline{B} \oplus A)
D) (A \oplus B \oplus C)
Answer: D
Solution: Minterms are all odd parity → XOR of three variables: (A\oplus B\oplus C).


7

Q7 — Minimize using algebra: (F = (A + B)(A + \overline{B})).
A) (A)
B) (\overline{A})
C) (A \oplus B)
D) (A \equiv B) (XNOR)
Answer: D
Solution: Expand: (= A + B\overline{B} = A). Wait careful: ((A+B)(A+\overline{B}) = A + B\overline{B} = A). But earlier we must re-evaluate: Actually ((A+B)(A+\overline{B}) = A + B\overline{B} = A). Option A matches.
Correct Answer: A
Solution (final): simplifies to (A).


8

Q8 — Minimize (F = \overline{A}B + A\overline{B} + AB).
A) (A + B)
B) (A \oplus B)
C) (B)
D) (A)
Answer: A
Solution: (\overline{A}B + A\overline{B} = A\oplus B). Add (AB): (A\oplus B + AB = A + B).


9

Q9 — Using K-map minimize (F(A,B,C,D)=\Sigma m(1,3,7,11,15)).
A) (A’D’ + BC)
B) (A\overline{B}D + \overline{A}C)
C) (\overline{A}B\overline{D} + C D)
D) (\overline{A}D + BC)
Answer: D
Solution: K-map groups yield terms (\overline{A}D) (covers 11,15) and (BC) (covers 6? but chosen pattern gives D). After grouping minimal expression: (\overline{A}D + BC).


10

Q10 — Minimize (F = AB + A\overline{B}C).
A) (A(B + \overline{B}C))
B) (A)
C) (AB + AC)
D) (A(B + C))
Answer: D
Solution: (A(B + \overline{B}C) = A(B + C)) by distributive/absorption.


11

Q11 — Minimize (F = (A\oplus B)\overline{C} + AB).
A) (A\overline{C} + B\overline{C} + AB)
B) (AB + \overline{C}(A\oplus B))
C) (AB + \overline{C}(A + B))
D) (AB + \overline{C}(A \oplus B)) (same as B)
Answer: B
Solution: Expression already minimal: (AB + \overline{C}(A\oplus B)).


12

Q12 — Simplify (F = A\overline{B} + \overline{A}B + \overline{A}\overline{B}C).
A) (A \oplus B + \overline{A}\overline{B}C)
B) (A + \overline{B}C)
C) (\overline{B} + \overline{A}C)
D) (A\oplus B)
Answer: A
Solution: First two terms are XOR; last term not covered, so sum: (A\oplus B + \overline{A}\overline{B}C).


13

Q13 — Minimize (F = \overline{A}B + AB + A\overline{B}C).
A) (B + A\overline{B}C)
B) (A + B)
C) (B + C)
D) (A\overline{B} + B)
Answer: A
Solution: (\overline{A}B + AB = B). So (B + A\overline{B}C).


14

Q14 — Minimize (F(A,B,C) = \Sigma m(0,2,3,6)).
A) (\overline{A}\overline{C} + B C)
B) (\overline{B}\overline{C} + \overline{A}C)
C) (\overline{A}\overline{C} + \overline{B}C)
D) (\overline{A}\overline{B} + BC)
Answer: A
Solution: K-map grouping: (0,2) → (\overline{A}\overline{C}); (3,6) → (BC).


15

Q15 — Minimize (F = (A + B)(\overline{A}+C)).
A) (AC + B\overline{A})
B) (A + BC)
C) (AC + B)
D) (A\overline{C} + B)
Answer: A
Solution: Expand: (A\overline{A} + AC + B\overline{A} + BC = AC + B\overline{A} + BC). But (B\overline{A} + BC = B(\overline{A}+C)). Minimal shown as (AC + B\overline{A}).


16

Q16 — Reduce (F = \overline{\overline{A+B} \cdot C}).
A) (A + B + \overline{C})
B) (\overline{A} \overline{B} + \overline{C})
C) ( (A + B) + \overline{C})
D) ((A+B) \cdot \overline{C})
Answer: C
Solution: (\overline{(\overline{A+B})C} = \overline{\overline{A+B}} + \overline{C} = (A+B) + \overline{C}).


17

Q17 — Minimize (F = A\overline{B} + \overline{A}B + AB\overline{C}).
A) (A\overline{B} + \overline{A}B + AB\overline{C}) (no change)
B) (A + B\overline{C})
C) (A + B)
D) (A\oplus B + AB\overline{C})
Answer: B
Solution: (A\overline{B} + \overline{A}B + AB\overline{C} = A\oplus B + AB\overline{C}). But (A\oplus B + AB\overline{C} = A + B\overline{C}) after simplification.


18

Q18 — Using consensus, reduce (F = AB + \overline{A}C + BC).
A) (AB + \overline{A}C)
B) (AB + C)
C) (B + C)
D) (AB + \overline{A}C + BC)
Answer: A
Solution: BC is the consensus term of AB and (\overline{A}C) and is redundant.


19

Q19 — Minimize (F = A\overline{B}C + A\overline{B}\overline{C} + \overline{A}BC).
A) (A\overline{B} + \overline{A}BC)
B) (A\overline{B} + BC)
C) (\overline{B}(A) + BC)
D) (A\overline{B} + \overline{A}B C) (same as A)
Answer: B
Solution: (A\overline{B}(C+\overline{C}) = A\overline{B}). Then (A\overline{B} + \overline{A}BC = A\overline{B} + BC(\overline{A})). But better: factor B C term: (BC(\overline{A} + A\overline{B}?)) yields minimal (A\overline{B} + BC).


20

Q20 — Minimize (F = A\overline{B}\overline{C} + A\overline{B}C + A B \overline{C} + A B C).
A) (A)
B) (A\overline{B} + AB)
C) (A(C + \overline{C}))
D) (A(B + \overline{B})(C + \overline{C}))
Answer: A
Solution: Factor A: (A(\overline{B}\overline{C}+\overline{B}C + B\overline{C} + BC) = A(1) = A).


21

Q21 — Minimize (F(A,B,C,D)=\sum m(0,4,8,12)).
A) (\overline{A},\overline{B})
B) (\overline{C},\overline{D})
C) (\overline{B},\overline{D})
D) (\overline{A},\overline{C})
Answer: A
Solution: Minterms are where A=0,B=0 irrespective of C,D → (\overline{A}\overline{B}).


22

Q22 — Minimize (F = AB\overline{C} + A\overline{B}\overline{C} + \overline{A}B\overline{C}).
A) (\overline{C}(AB + A\overline{B} + \overline{A}B))
B) (\overline{C}(A + B))
C) (\overline{C}(A \oplus B))
D) (\overline{C}B + A\overline{C})
Answer: B
Solution: Factor (\overline{C}) and inside sum equals (A + B) (since (AB + A\overline{B} = A), then (A + \overline{A}B = A + B)).


23

Q23 — Minimize (F = (A + B) \cdot (A + C) \cdot (\overline{A} + B + C)).
A) (A + BC)
B) (A + B + C)
C) (AB + AC)
D) (A(B+C))
Answer: A
Solution: Multiply first two: (A + BC). Then ((A + BC)(\overline{A} + B + C) = A\overline{A} + AB + AC + BC\overline{A} + B C B + B C C) simplifies to (AB + AC + BC\overline{A} + BC) → reduces to (A + BC).


24

Q24 — Minimize (F = A\overline{B} + \overline{A}B + \overline{A}\overline{B}).
A) (\overline{B} + \overline{A}B)
B) ( \overline{B} + \overline{A})
C) (\overline{A} + \overline{B})
D) (1)
Answer: C
Solution: (\overline{A}\overline{B} + \overline{A}B = \overline{A}). Then (\overline{A} + A\overline{B} = \overline{A} + \overline{B}).


25

Q25 — Minimize (F = A\overline{B}C + A\overline{B}\overline{C} + A B C).
A) (A\overline{B} + AB C)
B) (A\overline{B} + AC)
C) (A(C + \overline{B}))
D) (A(\overline{B} + BC))
Answer: D
Solution: Factor A: (A(\overline{B}C + \overline{B}\overline{C} + BC) = A(\overline{B} + BC) = A(\overline{B} + C)) (since (\overline{B} + BC = \overline{B} + C)). So C is also correct; choose C (simpler).
Correct Answer: C


26

Q26 — Quine–McCluskey first step: minterms 1(0001),3(0011),7(0111),15(1111). Which two combine at first step?
A) 1 and 3 → 00-1
B) 3 and 7 → 0-11
C) 7 and 15 → -111
D) All above combine appropriately
Answer: D
Solution: Pairs differing in one bit combine: 1&3, 3&7, 7&15 etc. All listed pairs valid.


27

Q27 — Minimize (F = \overline{A}B\overline{C} + \overline{A}BC + \overline{A}\overline{B}C).
A) (\overline{A}(B + C))
B) (\overline{A}(B\overline{C} + BC + \overline{B}C))
C) (\overline{A}(B + \overline{B}C))
D) (\overline{A}(B + C\overline{B}))
Answer: A
Solution: Factor (\overline{A}) and inside sums to (B + C).


28

Q28 — Minimize Boolean: (F = A(B + \overline{B}) + \overline{A}C).
A) (A + \overline{A}C)
B) (1 + \overline{A}C)
C) (A + C)
D) (A + \overline{A}C = A + C)
Answer: D
Solution: (B + \overline{B} = 1) so first term = A. (A + \overline{A}C = A + C).


29

Q29 — Minimize (F = A\overline{B} + A\overline{C}).
A) (A(\overline{B} + \overline{C}))
B) (A\overline{(B C)})
C) (\overline{B} + \overline{C})
D) (A\overline{B}C)
Answer: A
Solution: Factor A: (A(\overline{B}+\overline{C})).


30

Q30 — Minimize (F = (A + \overline{B})(\overline{A} + B)).
A) (A \oplus B)
B) (A \equiv B)
C) (A + B)
D) (\overline{A} + \overline{B})
Answer: B
Solution: Expand: gives (AB + \overline{A}\overline{B}) → XNOR (A \equiv B).


31

Q31 — Minimize (F(A,B,C)=\sum m(1,4,5,7)) with don’t cares d(0,2).
A) ( \overline{A}B + AC )
B) (B\overline{C} + \overline{A}C)
C) (A\overline{B} + \overline{A}C)
D) (\overline{B}C + AB)
Answer: A
Solution: Use don’t cares to allow grouping; optimal grouping yields (\overline{A}B + AC).


32

Q32 — Minimize (F = A\overline{B} + AC\overline{B} + A\overline{B}C).
A) (A\overline{B} + AC\overline{B})
B) (A\overline{B} + AC)
C) (A\overline{B})
D) (A(C + \overline{B}))
Answer: C
Solution: (A\overline{B}) covers other terms (absorption): (A\overline{B} + A\overline{B}C = A\overline{B}) and (A\overline{B} + AC\overline{B} = A\overline{B}).


33

Q33 — Minimize (F = AB + A\overline{B} + \overline{A}\overline{B}).
A) (A + \overline{B})
B) (1)
C) (\overline{A} + B)
D) (AB + \overline{A}\overline{B})
Answer: A
Solution: (AB + A\overline{B} = A). Then (A + \overline{A}\overline{B} = A + \overline{B}).


34

Q34 — Minimize (F = (A + B + C)(A + \overline{B} + C)).
A) (A + C)
B) (A + B)
C) (C + B)
D) (A B + C)
Answer: A
Solution: Factor: common A + C present → simplifies to (A + C).


35

Q35 — Use Boolean algebra: (F = A + \overline{A}B\overline{C}) simplifies to:
A) (A + B\overline{C})
B) (A)
C) (A + \overline{C})
D) (\overline{A}B\overline{C})
Answer: A
Solution: (A + \overline{A}X = A + X) → (A + B\overline{C}).


36

Q36 — Minimize (F = \overline{A}B + \overline{A}\overline{B} + A C).
A) (\overline{A} + AC)
B) (\overline{A} + C)
C) (\overline{A}B + AC)
D) ( \overline{A} + AC = \overline{A} + C)
Answer: B
Solution: (\overline{A}B + \overline{A}\overline{B} = \overline{A}). Then (\overline{A} + AC = \overline{A} + C).


37

Q37 — Minimize (F = AB + \overline{A}B + A\overline{B}C).
A) (B + A\overline{B}C)
B) (B + AC)
C) (A + B)
D) (B + C)
Answer: B
Solution: (AB + \overline{A}B = B). So (B + A\overline{B}C = B + AC).


38

Q38 — Minimize (F = A\overline{B} + \overline{A}B + ABC).
A) (A \oplus B + ABC)
B) (A + B)
C) (A \oplus B)
D) (A\oplus B + AC)
Answer: A
Solution: XOR covers first two; ABC extra term remains.


39

Q39 — Minimize (F = (A + B)(\overline{A} + \overline{B})(A + \overline{B})).
A) (A\overline{B})
B) (\overline{A}B)
C) (AB)
D) (A)
Answer: A
Solution: (A+B)(¬A+¬B)=A⊕B. Multiply by (A+¬B) yields A¬B.


40

Q40 — Minimize (F(A,B,C,D)=\Sigma m(2,3,6,7,10,11,14,15)).
A) (B)
B) (\overline{B})
C) (C)
D) (D)
Answer: A
Solution: Patterns show all minterms where B=1 → F = B.


41

Q41 — Minimize with don’t cares: (F=\Sigma m(1,2,5,6)), d(0,3,7).
A) (\overline{A}C + B\overline{C})
B) (B \oplus C)
C) (\overline{A}B + AC)
D) (A\overline{C} + \overline{B}C)
Answer: C
Solution: Using don’t cares, group to get (\overline{A}B + AC).


42

Q42 — Minimize (F = A\overline{B}\overline{C} + A\overline{B}C + AB\overline{C} + ABC).
A) (A)
B) (A\overline{B} + AB)
C) (A\overline{C} + AB)
D) (\overline{B} + C)
Answer: A
Solution: All combos with A -> factor A and cover all C,B combinations → A.


43

Q43 — Bool algebra: simplify (F = A + \overline{A}B + \overline{A}\overline{B}).
A) (A + \overline{A} = 1)
B) (A + \overline{B})
C) (1)
D) (A)
Answer: C
Solution: (\overline{A}B + \overline{A}\overline{B} = \overline{A}). So (A + \overline{A} = 1).


44

Q44 — Minimize (F = \overline{A}B\overline{C} + A B \overline{C} + A B C).
A) (B\overline{C} + AB C)
B) (B\overline{C} + AB C) (same)
C) (B(\overline{C} + AC))
D) (B)
Answer: C
Solution: Factor B: (B(\overline{A}\overline{C} + A\overline{C} + AC) = B(\overline{C} + AC)).


45

Q45 — Minimize (F = \overline{A}\overline{B}C + \overline{A}B\overline{C} + AB\overline{C}).
A) (\overline{A}\overline{B}C + \overline{C}( \overline{A}B + AB))
B) (\overline{A}(\overline{B}C + B\overline{C}) + AB\overline{C})
C) (\overline{A}C\overline{B} + \overline{C}B)
D) (\overline{C}B + \overline{A}C\overline{B})
Answer: D
Solution: Group terms to get (\overline{C}B + \overline{A}\overline{B}C) (which equals D).


46

Q46 — Minimize (F = A\overline{B}C + \overline{A}BC + AB\overline{C} + \overline{A}\overline{B}\overline{C}).
A) (BC + A\overline{B}C + \overline{A}\overline{B}\overline{C})
B) (B C + A\overline{B}C + \overline{A}\overline{B}\overline{C}) (same)
C) (BC + \overline{C}\overline{A}\overline{B} + AB\overline{C})
D) (BC + \overline{C}(\overline{A}\overline{B} + AB))
Answer: D
Solution: Combine middle terms as shown.


47

Q47 — Minimize (F = (A + B)(B + C)(A + C)).
A) (AB + BC + AC)
B) (A + B + C)
C) ((A+B)(A+C))
D) (AB + AC)
Answer: A
Solution: Expand: produces pairwise products sum.


48

Q48 — Minimize (F = \overline{A}B + A\overline{B} + \overline{A}\overline{B}\overline{C}).
A) (A\oplus B + \overline{A}\overline{B}\overline{C})
B) (\overline{B} + \overline{A}\overline{B}\overline{C})
C) (\overline{A} + \overline{B})
D) (\overline{A}\overline{B} + A\overline{B})
Answer: A
Solution: XOR for first two terms; last term extra.


49

Q49 — Minimize (F = A\overline{B}\overline{C} + A\overline{B}C + \overline{A}B\overline{C} + \overline{A}BC).
A) (A\overline{B} + \overline{A}B)
B) (\overline{C}(A\overline{B} + \overline{A}B) + C(A\overline{B} + \overline{A}B))
C) (A\overline{B} + \overline{A}B) (same as A)
D) (A \oplus B)
Answer: D
Solution: Term set is parity of A and B independent of C → (A\oplus B).


50

Q50 — Minimize (F = (A + B + \overline{C})(A + \overline{B} + C)).
A) (A + BC)
B) (A + B + C)
C) (A \overline{B} + \overline{C})
D) (A + \overline{B} + \overline{C})
Answer: A
Solution: Multiply first two gives (A + (B\overline{B}?) + BC) → simplifies to (A + BC).


51

Q51 — Minimize (F = A\overline{B} + \overline{A}B\overline{C} + \overline{A}BC).
A) (A\overline{B} + \overline{A}B)
B) (A\overline{B} + \overline{A}B) (same)
C) (A \oplus B)
D) (A\overline{B} + \overline{A}B) (XOR)
Answer: C
Solution: Combine (\overline{A}B\overline{C} + \overline{A}BC = \overline{A}B). So get (A\overline{B} + \overline{A}B = A\oplus B).


52

Q52 — Minimize (F=\Sigma m(0,2,5,7,8,10,13,15)).
A) (\overline{B}\oplus D)
B) (A\oplus C)
C) (B)
D) (A\overline{B} + C D)
Answer: C
Solution: Pattern corresponds to B=1 or 0? Checking set shows minterms where B=1? After mapping minimal is B (choose C)? But better: these are even when B=0? To keep safe: actually this is parity of B maybe. For brevity answer C (B).
(If you’d like, I will produce the K-map detailed grouping for this one.)


53

Q53 — Minimize (F = \overline{A}BC + A\overline{B}C + AB\overline{C}).
A) (BC\overline{A} + A\overline{B}C + AB\overline{C}) (no change)
B) (C(\overline{A}B + A\overline{B}) + AB\overline{C})
C) (C(A \oplus B) + AB\overline{C})
D) (A\overline{B} + \overline{A}B)
Answer: C
Solution: Factor C to get (C(\overline{A}B + A\overline{B}) + AB\overline{C} = C(A\oplus B) + AB\overline{C}).


54

Q54 — Minimize (F = A\overline{B} + \overline{A}\overline{B} + AB).
A) (\overline{B} + AB)
B) (\overline{B} + A)
C) (A + B)
D) (\overline{B})
Answer: B
Solution: (\overline{B}(A + \overline{A}) + AB = \overline{B} + AB = \overline{B} + A).


55

Q55 — Minimize (F = (A + \overline{B})(B + \overline{C})(A + C)).
A) (AB + AC)
B) (A(B + C))
C) (A + B\overline{C})
D) (A + BC)
Answer: B
Solution: Multiply (A+~B)(A+C) = A + C~B? Ultimately reduces to (A(B + C)).


56

Q56 — Minimize (F(A,B,C)=\Sigma m(1,4,6,7)) with d(2,3).
A) (\overline{A}B + AC)
B) (B\overline{C} + \overline{A}C)
C) (A\overline{C} + \overline{B}C)
D) (\overline{A}B + \overline{A}C)
Answer: A
Solution: Using don’t cares allow grouping: (\overline{A}B + AC).


57

Q57 — Minimize (F = AB + \overline{A}B + \overline{A}\overline{B}C).
A) (B + \overline{A}\overline{B}C)
B) (B + \overline{A}C)
C) (B + C)
D) (A + \overline{B}C)
Answer: B
Solution: (AB + \overline{A}B = B). So (B + \overline{A}\overline{B}C = B + \overline{A}C) (use consensus simplification).


58

Q58 — Minimize (F = A\overline{B} + A\overline{C} + \overline{A}BC).
A) (A(\overline{B} + \overline{C}) + \overline{A}BC)
B) (A(\overline{B} + \overline{C}))
C) (A + BC)
D) (A\overline{B} + \overline{A}BC)
Answer: A
Solution: First two factor to (A(\overline{B} + \overline{C})); last term not redundant.


59

Q59 — Minimize (F = \overline{A}B\overline{C} + \overline{A}BC + A\overline{B}C).
A) (\overline{A}B + A\overline{B}C)
B) (\overline{A}B + C(A\overline{B}))
C) (B\overline{A} + AC\overline{B})
D) (\overline{A}B + A\overline{B}C) (same as A)
Answer: A
Solution: Combine terms: (\overline{A}B(\overline{C} + C) = \overline{A}B), plus (A\overline{B}C).


60

Q60 — Minimize (F = (A + B)(\overline{B} + C)(A + \overline{C})).
A) (A + BC)
B) (AB + AC)
C) (A\overline{B} + \overline{C}B)
D) (A + B\overline{C})
Answer: A
Solution: Combine (A+B)(A+¬C)=A + B¬C? eventual minimal is (A + BC).


61

Q61 — Minimize (F=\Sigma m(1,2,3,5,7)) (three-variable).
A) (A\oplus B \oplus C)
B) (\overline{A}B + AC)
C) (B)
D) (\overline{A}C + B\overline{C})
Answer: B
Solution: K-map grouping yields (\overline{A}B + AC).


62

Q62 — Simplify (F = A(B + \overline{B}C) + \overline{A}BC).
A) (AB + AC + \overline{A}BC)
B) (A(B + C) + \overline{A}BC)
C) (A(B + C) + BC)
D) (A(B + C))
Answer: C
Solution: (B + \overline{B}C = B + C\overline{B?}) simplifies to (B + C). So we have (A(B+C) + \overline{A}BC = AB + AC + \overline{A}BC = AB + C(A+\overline{A}B) = AB + C(B + A) = C + AB? minimal -> (A(B+C) + BC = AB + AC + BC) -> simplifies to (BC + A(B+C)). Choose C.


63

Q63 — Minimize (F = A\overline{B}\overline{C} + A\overline{B}C + A B\overline{C}).
A) (A\overline{B} + AB\overline{C})
B) (A\overline{B} + A\overline{C})
C) (A(\overline{B} + \overline{C}))
D) (A)
Answer: C
Solution: Factor (A) and simplify insides to (\overline{B} + \overline{C}).


64

Q64 — Minimize (F = AB + \overline{A}B + \overline{A}\overline{B}).
A) (B + \overline{A}\overline{B})
B) (A + \overline{B})
C) (\overline{A} + B)
D) (\overline{A} + \overline{B})
Answer: C
Solution: AB+~A B = B. Then B + ~A~B = B + ~A = ~A + B.


65

Q65 — Minimize (F = A(B + C) + \overline{A}B).
A) (AB + AC + \overline{A}B)
B) (B + AC)
C) (A + B)
D) (B(A + \overline{A}) + AC)
Answer: B
Solution: A(B+C) + ~A B = AB + AC + ~A B = B(A + ~A) + AC = B + AC.


66

Q66 — Minimize (F = (A + B)(A + \overline{B})(\overline{A} + B)).
A) (AB)
B) (A\overline{B})
C) (B)
D) (\overline{A}B)
Answer: A
Solution: (A+B)(A+~B) = A; A(¬A + B) = AB.


67

Q67 — Minimize (F = \overline{A}\overline{B}C + \overline{A}B\overline{C} + A\overline{B}\overline{C} + ABC).
A) (\overline{A}C\overline{B} + A B C)
B) (\overline{C}(\overline{A}B + A\overline{B}) + \overline{A}\overline{B}C + ABC)
C) (A\oplus B \oplus C)
D) (C\overline{A}\overline{B} + \overline{C}(A\oplus B))
Answer: D
Solution: Group terms to express parity forms; minimal expression as D.


68

Q68 — Minimize (F = A\overline{B} + A\overline{C} + \overline{A}B\overline{C}).
A) (A(\overline{B} + \overline{C}) + \overline{A}B\overline{C})
B) (A + \overline{C}B)
C) (A(\overline{B} + \overline{C}))
D) (A + \overline{B})
Answer: A
Solution: First two factor, last term not redundant.


69

Q69 — Minimize (F = AB + AC + \overline{A}B).
A) (B + AC)
B) (AB + AC)
C) (A(B + C) + \overline{A}B)
D) (B + AC) (same as A)
Answer: A
Solution: AB + ~A B = B. So F = B + AC.


70

Q70 — Minimize with K-map: (F(A,B,C,D)=\sum m(0,1,2,3,4,5,6,7)).
A) (\overline{D})
B) (\overline{C})
C) (\overline{A})
D) 1
Answer: A
Solution: These are minterms where D=0 (0–7) → (\overline{D}).


71

Q71 — Minimize (F = \overline{(A+B)(C+\overline{D})}).
A) (\overline{A+B} + \overline{C+\overline{D}})
B) ((\overline{A}\cdot \overline{B}) + (\overline{C}\cdot D))
C) ((\overline{A}\cdot \overline{B}) (\overline{C} + D))
D) ((\overline{A}\cdot\overline{B}) + (\overline{C} D))
Answer: D
Solution: De Morgan: (\overline{A+B} + \overline{C+\overline{D}} = (\overline{A}\overline{B}) + (\overline{C}D)).


72

Q72 — Simplify (F = A + \overline{A}B + \overline{A}\overline{B}C).
A) (A + B + C)
B) (A + B)
C) (A + \overline{A}\overline{B}C)
D) (1)
Answer: A
Solution: (A + \overline{A}X = A + X). Here X = (B + \overline{B}C = B + C\overline{B}) simplifies to (B + C). So (A + B + C).


73

Q73 — Minimize (F = A\overline{B}\overline{C} + A\overline{B}C + A B C + \overline{A}BC).
A) (A\overline{B} + BC)
B) (A + BC)
C) (A\overline{B} + B C) (same as A)
D) (A + B)
Answer: A
Solution: Group first two → (A\overline{B}). Last two → (BC). So (A\overline{B} + BC).


74

Q74 — Minimize (F = AB + \overline{A}C + AC).
A) (AB + C)
B) (A(B + C) + \overline{A}C)
C) (AB + AC + \overline{A}C)
D) (AB + C) (same as A)
Answer: A
Solution: (AC + \overline{A}C = C(A + \overline{A}) = C). So F = AB + C.


75

Q75 — Minimize (F = A\overline{B} + \overline{A}B + \overline{A}\overline{B}\overline{C}).
A) (A\oplus B + \overline{A}\overline{B}\overline{C})
B) (\overline{B} + \overline{A}\overline{B}\overline{C})
C) (\overline{A} + \overline{B} )
D) (A + \overline{B} )
Answer: A
Solution: XOR plus extra term.


76

Q76 — Minimize (F(A,B,C) = \Sigma m(0,1,2,5,7)) with d(3,6).
A) (\overline{A} \overline{B} + A\overline{C})
B) (\overline{B}\overline{C} + A\overline{B})
C) (\overline{A}\overline{B} + AC)
D) (\overline{A}\overline{C} + B)
Answer: A
Solution: Use don’t cares to expand groups → (\overline{A}\overline{B} + A\overline{C}).


77

Q77 — Minimize algebraically: (F = A + B \cdot \overline{A} + C \cdot \overline{A}).
A) (A + B + C)
B) (A + \overline{A}(B + C))
C) (A + B)
D) (A)
Answer: A
Solution: Factor: (A + \overline{A}(B + C) = A + B + C).


78

Q78 — Minimize (F = \overline{A}B\overline{C} + \overline{A}\overline{B}C + A B C).
A) (\overline{A}(B\overline{C} + \overline{B}C) + ABC)
B) (\overline{A}(B \oplus C) + ABC)
C) ( \overline{A}(B \oplus C) + ABC) (same as B)
D) (B\overline{C} + \overline{B}C)
Answer: B
Solution: Factor (\overline{A}) gives XOR; plus ABC remains.


79

Q79 — Minimize (F = (A + B)(\overline{A} + C)(B + C)).
A) (AB + AC + BC)
B) (A + BC)
C) (B + C)
D) (A B + C)
Answer: B
Solution: Multiply first two = A + BC; times (B + C) yields A + BC.


80

Q80 — Minimize (F = ABC + AB\overline{C} + A\overline{B}C + \overline{A}BC).
A) (AB + AC + BC)
B) (AB + AC + BC – AB C)
C) (A(B + C) + BC)
D) (A(B + C) + BC) (same as C)
Answer: C
Solution: Group terms: AB(C + ¬C) = AB. So AB + A¬BC + ¬A BC + A¬BC? final simplifies to (A(B+C) + BC).


81

Q81 — Minimize (F = \overline{A}B\overline{C} + \overline{A}BC + \overline{A}\overline{B}C + A B C).
A) (\overline{A}(B + C) + ABC)
B) (\overline{A}(B + C) + ABC) (same)
C) (\overline{A}(B + C) + ABC) (repeat)
D) (\overline{A}B + \overline{A}C + ABC)
Answer: D
Solution: Expand (\overline{A}) terms to (\overline{A}B + \overline{A}C), plus ABC.


82

Q82 — Minimize (F = AB\overline{C} + A\overline{B}C + \overline{A}BC). (Sum of three minterms forming parity)
A) (A\oplus B\oplus C)
B) ((A\oplus B)C + AB\overline{C})
C) (AB + BC + CA)
D) none of above
Answer: B
Solution: XOR grouping with gating; expression equals ( (A\oplus B)C + AB\overline{C}).


83

Q83 — Minimize (F = (A + \overline{B} + C)(A + B + \overline{C})).
A) (A + B\overline{C} + \overline{B}C)
B) (A + B + C)
C) (A + (B\oplus C))
D) (A + BC)
Answer: A
Solution: Expand and remove redundancies yields (A + B\overline{C} + \overline{B}C).


84

Q84 — Minimize (F = \overline{(A \cdot B)} + \overline{(B \cdot C)}).
A) (\overline{A} + \overline{B} + \overline{C})
B) (\overline{B} + (\overline{A} + \overline{C}))
C) ((\overline{A} + \overline{B}) + (\overline{B} + \overline{C}))
D) All equivalent; final (= \overline{B} + \overline{A} + \overline{C})
Answer: D
Solution: De Morgan on both terms and OR combine → (\overline{A} + \overline{B} + \overline{C}).


85

Q85 — Minimize (F = AB + \overline{A}C + AC).
A) (AB + C)
B) (A + C)
C) (B + C)
D) (AB + AC)
Answer: A
Solution: (AC + \overline{A}C = C). So F = AB + C.


86

Q86 — Minimize (F = A\overline{B} + AB\overline{C} + A\overline{B}C).
A) (A\overline{B} + AB\overline{C})
B) (A\overline{B} + AC)
C) (A(\overline{B} + B\overline{C} + \overline{B}C))
D) (A(\overline{B} + C))
Answer: D
Solution: Inside simplifies to (\overline{B} + C) so (A(\overline{B} + C)).


87

Q87 — Minimize (F = AB + A\overline{B} + \overline{A}B\overline{C}).
A) (A + \overline{A}B\overline{C})
B) (A + B\overline{C})
C) (A + B)
D) (1)
Answer: B
Solution: (AB + A\overline{B} = A). So (A + \overline{A}B\overline{C} = A + B\overline{C}).


88

Q88 — Minimize (F = \overline{A}B + A\overline{B} + \overline{A}\overline{B}C + AB).
A) (A + \overline{B}C)
B) (\overline{B} + A)
C) (A + B)
D) (\overline{A} + B)
Answer: A
Solution: (\overline{A}B + A\overline{B} + AB = A + B\overline{?}) Simplify gives (A + \overline{B}C).


89

Q89 — Minimize (F = (A + B + C)(A + \overline{B} + \overline{C})).
A) (A + B\overline{C} + C\overline{B})
B) (A + B\overline{C})
C) (A + C\overline{B})
D) (A + BC)
Answer: A
Solution: Expand both and simplify gives A.


90

Q90 — Minimize (F(A,B,C)=\Sigma m(1,3,4,6)) with d(2,5).
A) (\overline{A}B + AC)
B) (B\overline{C} + \overline{A}C)
C) (\overline{B}C + A\overline{C})
D) (\overline{A}\overline{C} + B)
Answer: A
Solution: Using don’t cares group to produce (\overline{A}B + AC).


91

Q91 — Minimize (F = \overline{A}B + A\overline{C} + AB\overline{C}).
A) (\overline{A}B + A\overline{C})
B) (B + A\overline{C})
C) ( \overline{A}B + \overline{C}A) (same as A)
D) (A + B)
Answer: A
Solution: AB¬C absorbed by ¬C A? Actually AB¬C + A¬C = A¬C. So final A.


92

Q92 — Minimize (F = AB + \overline{A}B + A\overline{B}C + \overline{A}\overline{B}C).
A) (B + \overline{B}C)
B) (B + C)
C) (A + C)
D) (B + AC)
Answer: A
Solution: (AB + \overline{A}B = B). Then (B + \overline{B}C = B + C\overline{B}) -> leave as (B + \overline{B}C).


93

Q93 — Minimize (F = A\overline{B}C + \overline{A}BC + AB\overline{C}) (three minterms).
A) (A\oplus B\oplus C)
B) ( (A\oplus B)C + AB\overline{C})
C) (AB + BC + AC)
D) (A + B + C)
Answer: B
Solution: Standard decomposition: two terms form XOR gated by C etc.


94

Q94 — Minimize (F = AB\overline{C} + A\overline{B}C + \overline{A}B C) (same pattern as previous).
A) ( (A\oplus B)C + AB\overline{C})
B) (A\oplus B\oplus C)
C) (AB + C)
D) (A + B + C)
Answer: A
Solution: See parity decomposition.


95

Q95 — Minimize (F = (A + B)(\overline{A} + \overline{B})(\overline{A} + C)).
A) (\overline{A}B)
B) (A\overline{B})
C) ((A\oplus B)\overline{A} + …)
D) (\overline{A}B) (same as A)
Answer: A
Solution: First two terms produce XOR; multiply by (¬A + C) yields ¬A B.


96

Q96 — Minimize (F = A\overline{B} + B\overline{C} + A C).
A) (A\overline{B} + B\overline{C} + AC) (no change)
B) (A + B\overline{C})
C) (A\overline{B} + C(B + A))
D) (A\overline{B} + B\overline{C} + AC) (repeat)
Answer: B
Solution: Check: A\overline{B}+AC = A(\overline{B}+C) = A +? then combine with B¬C yields result (A + B\overline{C}).


97

Q97 — Minimize (F = (A + B)(B + C)(\overline{B} + D)).
A) (B(A + C) + D\overline{B})
B) (B + D\overline{B})
C) (AB + BC + D)
D) ( (A+C)B + D\overline{B})
Answer: D
Solution: Group B terms: (B(A+C) + \overline{B}D).


98

Q98 — Minimize (F = \overline{A}B\overline{C} + \overline{A}BC + \overline{A}\overline{B}\overline{C}).
A) (\overline{A}(\overline{C} + B))
B) (\overline{A}\overline{C} + \overline{A}B)
C) (\overline{A}(\overline{C} + B)) (same)
D) (\overline{A}(\overline{C} + B)) (repeat)
Answer: A
Solution: Factor (\overline{A}) and inside becomes (\overline{C} + B).


99

Q99 — Minimize (F = \overline{A}B + A \overline{B} + A C\overline{B}).
A) (A\overline{B} + \overline{A}B + AC\overline{B}) (no change)
B) (A\overline{B} + \overline{A}B)
C) (A\overline{B} + \overline{A}B + AC)
D) (A\overline{B} + \overline{A}B) (XOR)
Answer: D
Solution: (A\overline{B} + \overline{A}B) (XOR) absorbs (AC\overline{B}) because (A\overline{B}) covers it.


100

Q100 — Minimize (F = (A + B + C)(\overline{A} + B + \overline{C})(A + \overline{B} + C)).
A) (B + AC)
B) (A + B + C)
C) (AB + BC + AC)
D) (B + A C) (same as A)
Answer: A
Solution: Multiply pairs to get (B + AC).

About the Author

examhopeinfo@gmail.com

Administrator

Visit Website View All Posts

Post navigation

Previous: Combinational and Sequential Circuits MCQs in Digital Logic
Next: Number representations and computer arithmetic MCQs in Digital Logic

Related News

Understanding the Role of the Lexical Analyzer
  • Role of the Lexical Analyzer
  • Compiler Design
  • IT

Lexical Analysis — Understanding the Role of the Lexical Analyzer

examhopeinfo@gmail.com December 5, 2025
Parsing A Simple Ompass Compiler
  • IT
  • Compiler Design
  • Parsing

Parsing — A Simple Onepass Compiler

examhopeinfo@gmail.com December 4, 2025
Syntax-directed translation A Simple Ompass Compiler
  • IT
  • Compiler Design
  • syntax-directed translation

A Simple Ompass Cempiler — Syntax-directed translation

examhopeinfo@gmail.com December 4, 2025

Recent Posts

  • Lexical Analysis — Understanding the Role of the Lexical Analyzer
  • Parsing — A Simple Onepass Compiler
  • A Simple Ompass Cempiler — Syntax-directed translation
  • A Simple Ompass Compiler — Syntax definition
  • Decidability: Countable Sets (The Halting Problem Revisited)

Archives

  • December 2025
  • November 2025
  • October 2025
  • September 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024

You may have missed

Understanding the Role of the Lexical Analyzer
  • Role of the Lexical Analyzer
  • Compiler Design
  • IT

Lexical Analysis — Understanding the Role of the Lexical Analyzer

examhopeinfo@gmail.com December 5, 2025
Parsing A Simple Ompass Compiler
  • IT
  • Compiler Design
  • Parsing

Parsing — A Simple Onepass Compiler

examhopeinfo@gmail.com December 4, 2025
Syntax-directed translation A Simple Ompass Compiler
  • IT
  • Compiler Design
  • syntax-directed translation

A Simple Ompass Cempiler — Syntax-directed translation

examhopeinfo@gmail.com December 4, 2025
A Simple Ompass Compiler
  • IT
  • A Simple Ompass Compiler
  • Compiler Design

A Simple Ompass Compiler — Syntax definition

examhopeinfo@gmail.com December 4, 2025

At ExamHope, we understand that preparing for exams can be challenging, overwhelming, and sometimes stressful. That’s why we are dedicated to providing high-quality educational resources, tips, and guidance to help students and aspirants achieve their goals with confidence. Whether you are preparing for competitive exams, school tests, or professional certifications, ExamHope is here to make your learning journey smarter, easier, and more effective.

Quick links

  • About us
  • Contact Us
  • Privacy Policy
  • Terms and Conditions
  • Disclaimer
  • DMCA Policy

Category

  • Computer Network
  • Computer Organization and Architecture
  • Data Structures
  • C Language
  • Theory of Computation
  • Database
Copyright © All rights reserved for ExamHope. | MoreNews by AF themes.