Skip to content
ExamHope Logo

examhope

Primary Menu
  • Digital Logic
    • Arithmetic Operations
    • Asynchronous/Ripple Counters
    • Basic Gates
    • Boolean Algebraic Theorems
    • Codes
  • Data Structures
    • Binary Heaps
    • Binary Search
    • Binary Search Trees
    • Binary Tree
    • Binary Tree Sort
    • Bipartite Graphs
    • Complete Graph
  • Theory of Computation
    • Finite Automata
    • Finite Automaton First Example
  • Current Affairs
    • Sports News
    • Tech News
    • Bollywood News
    • Daily News
  • Database
  • Computer Network
  • Computer Organization and Architecture
  • C Language
  • Operating Systems
  • Software Engineering
  • Theory of Computation
  • About us
  • Contact Us
  • Privacy Policy
  • DMCA Policy
  • Terms and Conditions
  • Home
  • IT
  • Divide & Conquer MCQs for Algorithm Design Techniques
  • Divide & Conquer
  • Algorithms
  • IT

Divide & Conquer MCQs for Algorithm Design Techniques

examhopeinfo@gmail.com November 3, 2025 22 minutes read
Divide & Conquer

Divide & Conquer

Divide & Conquer (Algorithm Design Techniques)


  1. Recurrence: (T(n)=2T(n/2)+n). By Master theorem, (T(n)=)
    A) (O(n))โ€ƒB) (O(n\log n))โ€ƒC) (O(n^2))โ€ƒD) (O(\log n))
    Answer: B
    Explanation: (a=2,b=2,f(n)=n). (n^{\log_b a}=n). Case 2 โ†’ (T(n)=\Theta(n\log n)).
  2. Merge sort on array of size 4096 does worst-case comparisons โ‰ˆ:
    A) 4096โ€ƒB) 4096ยทlogโ‚‚(4096) โ‰ˆ 4096ยท12 = 49152โ€ƒC) 2^12โ€ƒD) 12
    Answer: B
    Explanation: Merge sort does ฮ˜(n log n) comparisons; logโ‚‚4096=12.
  3. Recurrence (T(n)=3T(n/3)+n) solves to:
    A) (O(n\log n))โ€ƒB) (O(n))โ€ƒC) (O(n^{\log_3 3}))โ€ƒD) (O(n^2))
    Answer: A
    Explanation: (a=3,b=3\Rightarrow n^{\log_b a}=n). f(n)=n โ‡’ case 2 โ†’ ฮ˜(n log n).
  4. QuickSort worst-case on sorted input (n elements) with naive pivot choice is:
    A) (O(n\log n))โ€ƒB) (O(n))โ€ƒC) (O(n^2))โ€ƒD) (O(\log n))
    Answer: C
    Explanation: Picking first or last as pivot yields degenerate partitions โ†’ quadratic.
  5. Closest pair of points via divide & conquer runs in:
    A) (O(n^2))โ€ƒB) (O(n\log n))โ€ƒC) (O(n\log^2 n))โ€ƒD) (O(n))
    Answer: B
    Explanation: Sort by x once and merge-strip step is linear per level โ†’ O(n log n).
  6. Recurrence (T(n)=4T(n/2)+n) gives order:
    A) (O(n^2))โ€ƒB) (O(n^{\log_2 4}=n^2))โ€ƒC) both A and B same โœ”โ€ƒD) (O(n\log n))
    Answer: C
    Explanation: a=4,b=2 โ†’ (n^{\log_2 4}=n^2); f(n)=n smaller โ†’ dominated by n^2.
  7. Karatsuba multiplication for two n-digit numbers runs in:
    A) (O(n^2))โ€ƒB) (O(n^{\log_2 3})\approx O(n^{1.585}))โ€ƒC) (O(n\log n))โ€ƒD) (O(\log n))
    Answer: B
    Explanation: Karatsuba reduces to 3 multiplications on half-size โ†’ exponent logโ‚‚3.
  8. Strassen matrix multiply for nร—n (n power of 2) runs in:
    A) (O(n^{2.807}))โ€ƒB) (O(n^3))โ€ƒC) (O(n^2))โ€ƒD) (O(n\log n))
    Answer: A
    Explanation: Strassen does 7 submultiplications on n/2 โ†’ exponent logโ‚‚7 โ‰ˆ 2.807.
  9. Counting inversions via divide & conquer (merge-based) runs in:
    A) (O(n^2))โ€ƒB) (O(n\log n))โ€ƒC) (O(n))โ€ƒD) (O(\log n))
    Answer: B
    Explanation: Merge step counts cross inversions in O(n); recurrence gives n log n.
  10. Recurrence (T(n)=T(0.9n)+O(1)) solves to:
    A) (O(\log n))โ€ƒB) (O(n))โ€ƒC) (O(1))โ€ƒD) (O(n\log n))
    Answer: A
    Explanation: Geometric shrink โ†’ number of levels ฮ˜(log n).
  11. Binary search in a sorted array of size 1,000,000 worst comparisons โ‰ˆ:
    A) 20โ€ƒB) 10โ€ƒC) 2โ€ƒD) 100
    Answer: A
    Explanation: logโ‚‚(1e6) โ‰ˆ 20 โ†’ O(log n).
  12. Recurrence (T(n)=2T(n/4)+\sqrt{n}): compare n^{log_b a}=n^{log_4 2}=n^{1/2}. So complexity =
    A) (O(\sqrt{n}\log n))โ€ƒB) (O(\sqrt{n}))โ€ƒC) (O(n))โ€ƒD) (O(n^{3/2}))
    Answer: A
    Explanation: f(n)=ฮ˜(n^{1/2}) equals n^{log_b a} โ†’ case 2 โ†’ ฮ˜(n^{1/2} log n).
  13. Divide & conquer algorithm that splits into 5 subproblems of size n/3 with no extra cost: (T(n)=5T(n/3)) order =
    A) (O(n^{\log_3 5}\approx n^{1.464}))โ€ƒB) (O(n\log n))โ€ƒC) (O(n^2))โ€ƒD) (O(n))
    Answer: A
    Explanation: Pure power law: exponent logโ‚ƒ5 โ‰ˆ1.464.
  14. Median of medians selection algorithm worst-case time:
    A) (O(n\log n))โ€ƒB) (O(n))โ€ƒC) (O(n^2))โ€ƒD) (O(\log n))
    Answer: B
    Explanation: Deterministic linear-time selection uses 5-group partitioning โ†’ T(n)=O(n).
  15. In divide & conquer, the recursion tree method: leaf-cost sum equals total work done by:
    A) Base-case costs aggregated over leaves โ†’ sum of leaf costs
    B) Only root cost matters
    C) It’s irrelevant
    D) Counts internal nodes only
    Answer: A
    Explanation: Recursion tree sums work at each node; leaves contribute their base-case costs.
  16. Multiplying polynomials by naive D&C (split halves, 4 multiplies) gives recurrence (T(n)=4T(n/2)+O(n)) โ†’ order:
    A) (O(n^2))โ€ƒB) (O(n\log n))โ€ƒC) (O(n^{\log_2 4}=n^2))โ€ƒD) both A and C
    Answer: D
    Explanation: 4 subproblems of half-size โ†’ n^2.
  17. Cooleyโ€“Tukey FFT divide-and-conquer computes DFT in:
    A) (O(n\log n))โ€ƒB) (O(n^2))โ€ƒC) (O(n))โ€ƒD) (O(\log n))
    Answer: A
    Explanation: FFT splits into two halves recursively โ†’ T(n)=2T(n/2)+O(n) โ†’ n log n.
  18. For recurrence (T(n)=T(n-1)+T(n-2)+O(1)) (like naive Fibonacci), complexity is:
    A) (O(2^n))โ€ƒB) (O(n))โ€ƒC) (O(n\log n))โ€ƒD) (O(n^2))
    Answer: A
    Explanation: Branching factor >1 yields exponential growth โ‰ˆ ฯ†^n.
  19. Divide & conquer closest pair requires sorting by x then merging by y. If we re-sort by y at each step it becomes:
    A) (O(n\log^2 n))โ€ƒB) (O(n\log n)) if we carry sorted order through levelsโ€ƒC) (O(n^2))โ€ƒD) (O(n))
    Answer: A (if re-sorting), B (if efficient) โ†’ correct intended: A if naive.
    Explanation: Re-sorting at each recursion level costs extra log factor; efficient implementations avoid re-sorting to keep O(n log n).
  20. Recurrence (T(n)=T(\alpha n)+T((1-\alpha)n)+O(n)) for constant 0<ฮฑ<1 gives T(n)=:
    A) (O(n\log n)) generally if splits balanced; worst-case O(n^2) if very unbalanced? Actually balanced โ†’ O(n log n).
    Answer: (O(n\log n)) when ฮฑ constant not too small.
    Explanation: At each level linear cost, number of levels ฮ˜(log n) when balanced.
  21. Finding kth smallest by randomized pivot has expected time:
    A) (O(n))โ€ƒB) (O(n\log n))โ€ƒC) (O(n^2))โ€ƒD) (O(\log n))
    Answer: A
    Explanation: Quickselect expected linear; worst-case O(n^2) but randomized gives expected O(n).
  22. Recurrence (T(n)=aT(n/b)+n^d) with (a=1,b=2,d=1) โ†’ T(n)=:
    A) (O(n))โ€ƒB) (O(n\log n))โ€ƒC) (O(\log n))โ€ƒD) (O(n^2))
    Answer: B
    Explanation: a=1 so n^{log_b a}=n^0=1; f(n)=n โ†’ polynomially larger than 1 โ†’ becomes ฮ˜(n).

(Wait: correct: for a=1,b=2, n^{log_b a}=n^0=1; f(n)=n which is polynomially larger โ†’ case 3? Actually Master theorem case 3 when f(n)=ฮฉ(n^{log_b a+ฮต}) i.e. f(n)=ฮฉ(n^{0+ฮต}) yes, so T(n)=ฮ˜(f(n))=ฮ˜(n). So answer should be A. Fix:)

  1. Recurrence (T(n)=1\cdot T(n/2)+n). By Master theorem, (n^{\log_2 1}=1). Since f(n)=n is polynomially larger than 1, T(n)=ฮ˜(n).
    Answer: A
    Explanation: Case 3 of Master theorem โ†’ T(n)=ฮ˜(n).
  2. Counting number of inversions by D&C on array of 1024 elements will take โ‰ˆ:
    A) 1024ยฒ operationsโ€ƒB) 1024ยทlogโ‚‚1024 โ‰ˆ 12288 operations (ฮ˜(n log n))โ€ƒC) 1024 onlyโ€ƒD) 2ยนโฐ squared
    Answer: B
    Explanation: Merge-based count runs in ฮ˜(n log n).
  3. Recurrence (T(n)=2T(n/2)+n/\log n) yields:
    A) (ฮ˜(n\log n)) because f(n)=n/log n is slightly smaller than n so compare to n^{log_b a}=n โ†’ f(n)=n/ log n = n^{1}/log n = n divided by polylog โ†’ still ฮ˜(n) up to polylog? Master theorem case 2 requires f(n)=ฮ˜(n^c). Here f(n)=n/ polylog, which is smaller than n by factor polylog, so case 1? Actually f(n)=n / log n = ฮ˜(n^{log_b a} / log n). This is case 2 borderline? It’s smaller than n by factor polylog so T(n)=ฮ˜(n log log n). There’s a known result: T(n)=2T(n/2)+n/ log n leads to T(n)=ฮ˜(n log log n).)

A) ฮ˜(n log log n)โ€ƒB) ฮ˜(n log n)โ€ƒC) ฮ˜(n)โ€ƒD) ฮ˜(n log^2 n)
Answer: A
Explanation: f(n)=n/ log n = n^{log_b a}/log n โ†’ borderline slower than n by log factor โ†’ yields ฮ˜(n log log n).

  1. Recurrence (T(n)=T(n/2)+T(n/3)+O(n)) asymptotically is:
    A) (O(n\log n))โ€ƒB) (O(n))โ€ƒC) (O(n^{1.5}))โ€ƒD) (O(n\log^2 n))
    Answer: B
    Explanation: Characteristic exponent ฮฑ solving 1= (1/2)^ฮฑ+(1/3)^ฮฑ <1 for ฮฑ=1? But since sum of fractions=5/6<1, tree has linear levels โ†’ total ฮ˜(n).
  2. In a D&C FFT with n=2^k, number of complex multiplications is about:
    A) n logโ‚‚nโ€ƒB) nยฒโ€ƒC) nโ€ƒD) log n
    Answer: A
    Explanation: Cooleyโ€“Tukey does ฮ˜(n log n) multiplications.
  3. Karatsuba recurrence (T(n)=3T(n/2)+ฮ˜(n)) โ†’ exponent = logโ‚‚3โ‰ˆ1.585 so complexity:
    A) ฮ˜(n^{1.585})โ€ƒB) ฮ˜(n^2)โ€ƒC) ฮ˜(n log n)โ€ƒD) ฮ˜(n)
    Answer: A
    Explanation: Master theorem yields n^{log_2 3} dominance.
  4. Divide & conquer to find majority element (Boyer-Moore is linear) using D&C merges candidates runs in:
    A) O(n log n)โ€ƒB) O(n)โ€ƒC) O(n^2)โ€ƒD) O(log n)
    Answer: B
    Explanation: Recurrence T(n)=2T(n/2)+O(1) yields O(n); D&C linear for majority.
  5. Merge sort is stable while quicksort (in-place) is:
    A) Always stableโ€ƒB) Not stable by default (unstable)โ€ƒC) Stable if implemented with extra memory onlyโ€ƒD) Both B and C
    Answer: D
    Explanation: In-place quicksort not stable; stability can be enforced with extra space.
  6. Recurrence (T(n)=T(n/2)+n) solves to:
    A) ฮ˜(n)โ€ƒB) ฮ˜(n log n)โ€ƒC) ฮ˜(log n)โ€ƒD) ฮ˜(n^2)
    Answer: A
    Explanation: Leaves sum dominated by root-level linear term but geometric series yields ฮ˜(n).
  7. For closest pair divide & conquer, the strip check examines at most how many points ahead in y-order?
    A) 7 (constant)โ€ƒB) O(n)โ€ƒC) O(log n)โ€ƒD) n/2
    Answer: A
    Explanation: In planar geometry, only up to 7 neighbors need checking.
  8. Multiplying two 1024-bit integers with Karatsuba vs grade-school; approximate speedup exponent suggests Karatsuba faster as n grows. True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Karatsuba O(n^{1.585}) vs school O(n^2); for large n Karatsuba better.
  9. For a recurrence (T(n)=aT(n/b)+n^d) if (d<\log_b a) then T(n)=:
    A) ฮ˜(n^{\log_b a}) (Case 1)โ€ƒB) ฮ˜(n^d \log n) (Case 2)โ€ƒC) ฮ˜(n^d) (Case 3)โ€ƒD) ฮ˜(\log n)
    Answer: A
    Explanation: f(n) smaller than n^{log_b a} implies root-dominated tree โ†’ ฮ˜(n^{log_b a}).
  10. Recurrence (T(n)=2T(n/2)+n\log n) yields:
    A) ฮ˜(n\log^2 n) (since f(n)=n log n > n^{log_b a}=n by log factor)โ€ƒB) ฮ˜(n\log n)โ€ƒC) ฮ˜(n^2)โ€ƒD) ฮ˜(n)
    Answer: A
    Explanation: Case 3 with extra polylog factor: T=ฮ˜(f(n)) if regularity; actually because f(n)=n log n = n^{1} log n, and a=2,b=2 โ†’ n^{log_b a}=n, so f(n)=n log n = n^{log_b a} log n โ†’ multiply by log n โ†’ ฮ˜(n log^2 n).
  11. For D&C algorithm that splits into 9 subproblems of size n/3 with linear combine, exponent = log_3 9 = 2 โ†’ T(n)=ฮ˜(n^2). True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: log_3 9 = 2, so n^2 dominates.
  12. Search for peak (element greater than neighbors) in unimodal array using divide & conquer (binary search style) runs in:
    A) O(log n)โ€ƒB) O(n)โ€ƒC) O(n log n)โ€ƒD) O(1)
    Answer: A
    Explanation: Compare middle with neighbor and recurse on side with greater neighbor โ†’ halving each step.
  13. D&C counting number of pairs with distance โ‰ค K in 1D with sorting and recursion runs in:
    A) O(n log n)โ€ƒB) O(n^2)โ€ƒC) O(n)โ€ƒD) O(log n)
    Answer: A
    Explanation: Similar to inversion count with merge-like counting.
  14. For recurrence (T(n)=T(n-1)+O(\log n)) gives complexity:
    A) ฮ˜(n log n)โ€ƒB) ฮ˜(n)โ€ƒC) ฮ˜(log n)โ€ƒD) ฮ˜(n\log\log n)
    Answer: A
    Explanation: Sum of log k over k up to n โ‰ˆ n log n.
  15. Quickselect expected O(n) but worst-case O(n^2). Median-of-medians gives worst-case O(n) by guaranteeing pivot is at least 30th percentile. True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Deterministic selection selects pivot guaranteeing constant fraction reduction.
  16. Dividing into three parts of size ~n/3 with recurrence (T(n)=3T(n/3)+n) yields:
    A) ฮ˜(n log n) as n^{log_3 3}=n and f(n)=n โ†’ case 2 โ†’ n log nโ€ƒB) ฮ˜(n)โ€ƒC) ฮ˜(n^2)โ€ƒD) ฮ˜(n^{log_3 3})
    Answer: A
    Explanation: a=3,b=3 โ†’ n^{log_b a}=n; f(n)=n โ†’ ฮ˜(n log n).
  17. In D&C convex hull (divide & conquer algorithm), merging two hulls can be done in:
    A) O(h1 + h2) time (linear in hull sizes)โ€ƒB) O(n^2)โ€ƒC) O(n log n)โ€ƒD) O(1)
    Answer: A
    Explanation: Upper and lower tangents found by walking around hulls โ†’ linear.
  18. Counting inversion recurrence via merge produces T(n)=2T(n/2)+ฮ˜(n). Number of inversions for n distinct sorted descending is:
    A) n(nโˆ’1)/2โ€ƒB) nโ€ƒC) 0โ€ƒD) n log n
    Answer: A
    Explanation: Every pair inverted in descending array โ†’ n choose 2.
  19. D&C algorithm that splits into 8 subproblems of size n/2 with combine O(n) yields exponent logโ‚‚ 8 = 3 so complexity:
    A) ฮ˜(n^3)โ€ƒB) ฮ˜(n^2)โ€ƒC) ฮ˜(n\log n)โ€ƒD) ฮ˜(n)
    Answer: A
    Explanation: a=8,b=2 โ†’ n^{log_2 8}=n^3.
  20. Solving recurrence (T(n)=T(\sqrt{n})+1) by variable change m=log n gives depth โ‰ˆ log log n โ†’ T(n)=ฮ˜(\log\log n). True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Repeated sqrt halves log twice each level โ†’ log log n levels.
  21. D&C for maximum subarray using divide and conquer gives recurrence (T(n)=2T(n/2)+ฮ˜(1)) if careful; complexity:
    A) ฮ˜(n)โ€ƒB) ฮ˜(n log n)โ€ƒC) ฮ˜(n^2)โ€ƒD) ฮ˜(log n)
    Answer: A
    Explanation: Merge step constant time if combine max suffix/prefix properly โ†’ linear overall.
  22. Master theorem cannot be applied when f(n) is irregular (e.g., f(n)=n^{\log_b a}ยทlog nยทlog log n). Then use recursion tree or Akraโ€“Bazzi. True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Master theorem covers many but not all f(n); advanced theorems handle irregularities.
  23. For a recurrence (T(n)=T(n-1)+T(n-3)+ฮ˜(1)) (nonuniform splits), asymptotic growth is exponential since characteristic equation >1 roots. True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Recurrence with constant branching >1 generally yields exponential solutions.
  24. In D&C, tail recursion (one recursive call last) can be optimized to iteration reducing stack. True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Tail-call elimination converts recursion to loop saving space.
  25. For divide & conquer selection of thresholds where subproblem sizes vary (like T(n)=T(n-1)+T(1)+ฮ˜(n)), worst-case becomes ฮ˜(n^2). True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Linear-depth recursion with linear combine yields quadratic.
  26. In a D&C for multiplying dense polynomials using FFT, complexity is ฮ˜(n log n). Using naive convolution it’s ฮ˜(n^2). True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: FFT reduces convolution to pointwise multiplication in O(n log n).
  27. Recurrence (T(n)=T(ฮฑ n)+T(ฮฒ n)+ฮ˜(n)) where ฮฑ+ฮฒ<1 yields T(n)=ฮ˜(n). True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Subproblems shrink sufficiently so linear combine across levels sums to linear.
  28. For D&C that splits into 2 subproblems of size nโˆ’1: (T(n)=2T(n-1)+O(1)) gives exponential ฮ˜(2^n). True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Each level nearly doubles number of subproblems only slightly smaller โ†’ exponential.
  29. For recurrence (T(n)=aT(n/b)+f(n)) if f(n)=ฮ˜(n^{log_b a}ยทlog^k n), then T(n)=ฮ˜(n^{log_b a}ยทlog^{k+1} n). True or False?
    A) True (standard Master theorem case 2 variant)โ€ƒB) False
    Answer: A
    Explanation: When f matches n^{log_b a} times polylog, multiply by extra log factor.
  30. In recursive matrix multiplication via D&C using block multiplication into 8 blocks (standard), complexity ฮ˜(n^3). Using Strassen reduces constant exponent. True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Standard block multiply yields 8 mults of size n/2 โ†’ n^3; Strassen reduces mults to 7.
  31. D&C convex hull requires sorting points by x first: cost O(n log n) dominated by sort; hull combine linear โ†’ total O(n log n). True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Sorting dominates; divide/merge hull linear.
  32. For recurrence (T(n)=T(n/2)+T(n/3)+T(n/6)+ฮ˜(n)), since fractions sum to 1, complexity is ฮ˜(n log n). True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: When sum of fractions =1 and combine cost ฮ˜(n), levels number ฮ˜(log n) โ†’ n log n.
  33. Dividing into subproblems of sizes n/2 ยฑ1 (slightly imbalanced) usually doesn’t change asymptotic complexity of balanced case. True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Constant-size imbalance doesn’t affect asymptotic exponent.
  34. D&C algorithm to find majority element works by combining candidates from halves and verifying. Complexity O(n). True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Recurrence 2T(n/2)+O(1) โ†’ O(n).
  35. Recurrence (T(n)=2T(n/2)+n\log n) solved earlier yields ฮ˜(n log^2 n). True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: f(n)=n log n = n^{log_b a} log n โ†’ leads to extra log factor.
  36. For integer multiplication, Toomโ€“Cook (generalization of Karatsuba) improves exponent further than Karatsuba. True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Toom-k reduces exponent closer to 1 as k increases; asymptotically FFT best.
  37. In D&C closest pair, if points have integer coordinates with bounded range, a bucketing approach gives O(n) time, bypassing D&C. True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: With bounded coordinate range you can use hashing/bucketing for linear time.
  38. Solving recurrence (T(n)=T(n/2)+T(n/4)+T(n/8)+โ€ฆ+O(n)) where geometric series sums less than n implies T(n)=ฮ˜(n). True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Total work per level is O(n) but number of levels O(log n)?? Actually subproblem sizes sum to <n at each level so tree depth constant? For this specific infinite-like sum levels constant โ†’ overall ฮ˜(n). Correct intended: True.
  39. D&C selection algorithm using median of medians splits into groups of 7 rather than 5 yields still linear time but with different constants. True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Any constant group size โ‰ฅ5 works with different constants ensuring linear worst-case.
  40. In D&C, if combine step costs ฮ˜(n^2) while recursing into two halves, recurrence (T(n)=2T(n/2)+n^2) yields ฮ˜(n^2). True or False?
    A) True (since f(n)=n^2 larger than n^{log_b a}=n) โ†’ case 3 โ†’ T=ฮ˜(n^2)โ€ƒB) False
    Answer: A
    Explanation: f dominates so T(n)=ฮ˜(n^2).
  41. For D&C to compute convex hull in higher dimensions (d >2), algorithms are more complex and asymptotically more expensive (e.g., O(n^{โŒˆd/2โŒ‰})). True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Convex hull complexity grows with dimension; algorithms become higher polynomial.
  42. Recurrence (T(n)=T(n/2)+T(n/3)+T(n/5)+ฮ˜(n)) has fractional sum less than 1 โ‡’ T(n)=ฮ˜(n). True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: If sum of sizes coefficients <1, linear-term dominates giving linear.
  43. Merge sortโ€™s space usage (auxiliary) is ฮ˜(n) for top-down, but bottom-up in-place merge variants exist requiring O(1) extra but with slower combine. True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: In-place merging possible but more complicated and slower.
  44. The Master theorem fails when recursion has non-constant number of subproblems depending on n (e.g., a(n) non-constant). True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Master theorem assumes constant a and b; variable branching needs other methods.
  45. For (T(n)=T(n-1)+ฮ˜(1)) we get ฮ˜(n). This is a degenerate divide & conquer with one subproblem. True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Linear recursion yields linear time.
  46. Muliplying polynomials via D&C using convolution via FFT is preferable when degree n large enough (threshold about hundreds). True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: FFT overhead pays off for sufficiently large n.
  47. In D&C, the number of leaves in recursion tree times base cost equals total leaf cost. For balanced binary recurrences with leaf cost ฮ˜(1), number of leaves โ‰ˆ n^{log_b a}. True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Leaf count approximates a^{height} where height log_b n.
  48. The recurrence (T(n)=3T(n/4)+n) yields complexity (ฮ˜(n^{\log_4 3})โ‰ˆฮ˜(n^{0.793})). True or False?
    A) False โ€” compute log_4 3โ‰ˆ0.79 <1 but f(n)=n larger โ†’ case 3 โ†’ ฮ˜(n).
    Answer: False
    Explanation: Since n^{log_b a}=n^{0.79} and f(n)=n = larger poly power, T(n)=ฮ˜(n).
  49. For D&C that uses random pivot (QuickSort) average-case recurrence T(n)=2T(n/2)+ฮ˜(n) gives ฮ˜(n log n). True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Expected balanced splits lead to n log n.
  50. D&C algorithm to compute k-th order statistic by splitting into โˆšn chunks (median of medians variant) gives linear time too. True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Various grouping sizes yield linear time with appropriate analysis.
  51. Recurrence (T(n)=T(\alpha n)+ฮ˜(n)) with ฮฑ in (0,1) gives ฮ˜(n). True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Shrinking subproblem plus linear combine yields linear time.
  52. For D&C on graphs, divide by removing separator of size O(โˆšn) (planar graphs) gives algorithms like separator-based shortest paths; complexity often improved. True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Planar separators lead to divide-and-conquer with good bounds.
  53. In recurrence (T(n)=2T(n/2)+n/\log n) earlier we concluded ฮ˜(n log log n). So T(2^k) scales like 2^kยทk/ log 2^k? The asymptotic form consistent. True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Subtle polylog yields extra log log factor.
  54. D&C convex hull naive merging yields O(n log n); incremental insertion can be worse in the worst case O(n^2). True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Incremental algorithms can degrade on adversarial input.
  55. For D&C median-of-medians selection using groups of 3 fails to guarantee linear time (group size too small). True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Groups of 3 don’t guarantee constant fraction discarded; groups of 5 suffice.
  56. Divide & conquer algorithms naturally parallelize because subproblems independent; parallel time reduces to depth of recursion. True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Parallelism available across subproblems; critical path equals recursion depth.
  57. D&C solution to integer multiplication (Schonhageโ€“Strassen) achieves near-linear time O(n log n log log n) asymptotically (using FFT over rings). True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Advanced algorithms improve exponents approaching near-linear.
  58. For recurrence (T(n)=T(n/2)+T(n/3)+T(n/6)+1) where fractions sum to 1, with constant combine cost, T(n)=ฮ˜(log n) or ฮ˜(n)? Since combine cost constant and branching count accumulates โ†’ O(log n)?? Actually because sum of sizes equals n, but combine cost constant, leaves number grows? For a=3 subcalls but sizes fraction sum =1, the tree height ฮ˜(log n) and total nodes ฮ˜(n)? This is subtle. Safer to avoid ambiguous question. (Skip to next.)
  59. (replacement) Using D&C to compute matrix chain optimal parenthesization with naive recursion is exponential, but DP reduces to O(n^3). True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Brute-force recursion enumerates exponentially many parenthesizations; DP memoizes polynomially.
  60. In D&C, when combining solutions requires global communication (e.g., all-to-all), parallel efficiency drops. True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Heavy combine step becomes bottleneck limiting parallel speedup.
  61. For recurrence (T(n)=aT(n/b)+f(n)), if a< b^d then f dominates and T(n)=ฮ˜(f(n)). True or False?
    A) True (Master theorem case 3)โ€ƒB) False
    Answer: A
    Explanation: If f(n) polynomially larger than n^{log_b a}, f dominates.
  62. D&C for matrix inversion often uses block inversion with recursion and runs asymptotically like matrix multiplication. True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Block inversion reduces to matrix multiplications and solves with same exponent asymptotically.
  63. Divide & conquer algorithm to compute skyline of buildings sorts by x then merges skylines in linear combine โ†’ overall O(n log n). True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Merge skylines linear; sort dominates.
  64. For T(n)=T(n/2)+T(n/3)+T(n/5)+n^0.5, since sum fractions <1 and f(n) sublinear, T(n)=ฮ˜(n). True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Shrinking splits make linear term sum to linear overall.
  65. Divide & conquer algorithms sometimes use fallback to naive methods for small n (base case threshold) for constant factor improvement. True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Practical implementations switch to insertion sort/naive multiply for small sizes.
  66. For recurrence (T(n)=T(n-1)+T(n-1)+O(1)=2T(n-1)+O(1)) we get ฮ˜(2^n). True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Each level doubles subproblems causing exponential growth.
  67. D&C for calculating convex polygon diameter (rotating calipers) after hull computed is linear; overall after sorting hull cost still O(n log n). True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Hull O(n log n), diameter linear on hull size.
  68. Recurrence with variable split sizes like T(n)=T(n- n^{1/2})+ฮ˜(1) has depth ~ n^{1/2} โ†’ T(n)=ฮ˜(n^{1/2}). True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Each step reduces n by sqrt(n) roughly, giving sqrt levels.
  69. In D&C, tail recursion optimization reduces space but not the number of operations. True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Eliminates stack overhead but same total work.
  70. For D&C on strings, suffix array construction can be done in ฮ˜(n) with induced sorting or ฮ˜(n log n) with D&C suffix sorting (DC3 algorithm achieves linear). True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: DC3 (Skew) algorithm is linear-time; simpler D&C variants are n log n.
  71. For D&C exponentiation (binary exponentiation), recurrence T(n)=T(n/2)+O(1) gives ฮ˜(log n) time. True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Repeated squaring halves exponent each step.
  72. D&C algorithm that does constant work per level and has ฮ˜(log n) levels yields total ฮ˜(log n). True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Sum over levels constant times number of levels.
  73. In D&C, if subproblems overlap substantially, memoization (DP) may be preferable to pure recursion to avoid repeated work. True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Overlap suggests dynamic programming.
  74. For recurrence (T(n)=2T(n/2)+\frac{n}{\log n}), earlier we got ฮ˜(n log log n). So it grows faster than linear but slower than n log n. True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Subtle polylog yields intermediate growth.
  75. D&C on matrices for determinant via LU decomposition is typically O(n^3) dominated by matrix multiply; faster algorithms exist asymptotically. True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Standard Gaussian elimination cubic; fast matrix methods reduce exponent.
  76. For divide & conquer that always halves problem but has combine cost ฮ˜(n^2), recurrence (T(n)=2T(n/2)+n^2) gives ฮ˜(n^2). True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: f(n)=n^2 dominates n^{log_b a}=n, so T=ฮ˜(n^2).
  77. Final conceptual: The standard template for proving correctness of a divide & conquer algorithm is: show correctness on base case, assume correctness for subproblems (induction), and prove combine yields correct global solution. True or False?
    A) Trueโ€ƒB) False
    Answer: A
    Explanation: Structural induction with combine step yields correctness proof.

About the Author

examhopeinfo@gmail.com

Administrator

Visit Website View All Posts

Post navigation

Previous: Dynamic Programming (Algorithm Design Techniques) MCQs
Next: Graph Traversal MCQs For Gate Exam

Related News

Vivo X200 Price Drop
  • IT
  • Current Affairs
  • Tech News

Vivo X200: เคœเคพเคจเฅ‡ เค•เคฟเคคเคจเฅ€ เค•เคฎ เค•เฅ€เคฎเคค เคชเคฐ เคฎเคฟเคฒ เคฐเคนเคพ เคฏเฅ‡ 9400 เคฎเคฟเคกเคฟเคฏเคพ เคŸเฅ‡เค• เคชเฅเคฐเฅ‹เคธเฅ‡เคธเคฐ เคตเคพเคฒเคพ เคธเฅเคฎเคพเคฐเฅเคŸเคซเฅ‹เคจ

examhopeinfo@gmail.com December 23, 2025 0
Samsung Galaxy S25 Plus
  • IT
  • Current Affairs
  • Tech News

Samsung Galaxy S25 Plus เคชเคฐ เคฎเคฟเคฒ เคฐเคนเฅ€ เคญเคพเคฐเฅ€ เค›เฅ‚เคŸ ,เคœเคพเคจเฅ‡ เคธเฅ‡เคฒ เคชเฅเคฐเคพเค‡เคธ

examhopeinfo@gmail.com December 22, 2025 0
Electricity bill saving Smart Plug
  • IT
  • Current Affairs
  • Tech News

AI เค•เฅ‡ เค‡เคธ เฅ›เคฎเคพเคจเฅ‡ เคฎเฅ‡เค‚ เค•เฅˆเคธเฅ‡ เคฌเคฟเคœเคฒเฅ€ เคฌเคšเคพ เคฐเคนเฅ‡ เคนเฅˆเค‚ เคฏเคน เคธเฅเคฎเคพเคฐเฅเคŸ เคชเฅเคฒเค—?

examhopeinfo@gmail.com December 21, 2025 0

Recent Posts

  • Vivo X200: เคœเคพเคจเฅ‡ เค•เคฟเคคเคจเฅ€ เค•เคฎ เค•เฅ€เคฎเคค เคชเคฐ เคฎเคฟเคฒ เคฐเคนเคพ เคฏเฅ‡ 9400 เคฎเคฟเคกเคฟเคฏเคพ เคŸเฅ‡เค• เคชเฅเคฐเฅ‹เคธเฅ‡เคธเคฐ เคตเคพเคฒเคพ เคธเฅเคฎเคพเคฐเฅเคŸเคซเฅ‹เคจ
  • Samsung Galaxy S25 Plus เคชเคฐ เคฎเคฟเคฒ เคฐเคนเฅ€ เคญเคพเคฐเฅ€ เค›เฅ‚เคŸ ,เคœเคพเคจเฅ‡ เคธเฅ‡เคฒ เคชเฅเคฐเคพเค‡เคธ
  • AI เค•เฅ‡ เค‡เคธ เฅ›เคฎเคพเคจเฅ‡ เคฎเฅ‡เค‚ เค•เฅˆเคธเฅ‡ เคฌเคฟเคœเคฒเฅ€ เคฌเคšเคพ เคฐเคนเฅ‡ เคนเฅˆเค‚ เคฏเคน เคธเฅเคฎเคพเคฐเฅเคŸ เคชเฅเคฒเค—?
  • เค•เฅเคฏเคพ เคนเฅˆ เคฏเคน GhostPairing Scam เค”เคฐ เคฌเคฟเคจเคพ เคชเคพเคธเคตเคฐเฅเคก เค”เคฐ เคธเคฟเคฎ เค•เฅ‡ เค•เฅเคฏเฅ‹เค‚ เคนเฅ‹ เคฐเคนเคพ เคนเฅˆ เคตเฅเคนเคพเคŸเฅเคธเคชเฅเคช เค…เค•เคพเค‰เค‚เคŸ เคนเฅˆเค•
  • Leica เค•เฅˆเคฎเคฐเฅ‡ เค•เฅ‡ เคธเคพเคฅ เคœเคฒเฅเคฆ เคฒเฅ‰เคจเฅเคš เคนเฅ‹ เคธเค•เคคเคพ เคนเฅˆ Xiaomi Ultra 17

At ExamHope, we understand that preparing for exams can be challenging, overwhelming, and sometimes stressful. Thatโ€™s why we are dedicated to providing high-quality educational resources, tips, and guidance to help students and aspirants achieve their goals with confidence. Whether you are preparing for competitive exams, school tests, or professional certifications, ExamHope is here to make your learning journey smarter, easier, and more effective.

Quick links

  • About us
  • Contact Us
  • Privacy Policy
  • Terms and Conditions
  • Disclaimer
  • DMCA Policy

Category

  • Computer Network
  • Computer Organization and Architecture
  • Data Structures
  • C Language
  • Theory of Computation
  • Database

You may have missed

Vivo X200 Price Drop
  • IT
  • Current Affairs
  • Tech News

Vivo X200: เคœเคพเคจเฅ‡ เค•เคฟเคคเคจเฅ€ เค•เคฎ เค•เฅ€เคฎเคค เคชเคฐ เคฎเคฟเคฒ เคฐเคนเคพ เคฏเฅ‡ 9400 เคฎเคฟเคกเคฟเคฏเคพ เคŸเฅ‡เค• เคชเฅเคฐเฅ‹เคธเฅ‡เคธเคฐ เคตเคพเคฒเคพ เคธเฅเคฎเคพเคฐเฅเคŸเคซเฅ‹เคจ

examhopeinfo@gmail.com December 23, 2025 0
Samsung Galaxy S25 Plus
  • IT
  • Current Affairs
  • Tech News

Samsung Galaxy S25 Plus เคชเคฐ เคฎเคฟเคฒ เคฐเคนเฅ€ เคญเคพเคฐเฅ€ เค›เฅ‚เคŸ ,เคœเคพเคจเฅ‡ เคธเฅ‡เคฒ เคชเฅเคฐเคพเค‡เคธ

examhopeinfo@gmail.com December 22, 2025 0
Electricity bill saving Smart Plug
  • IT
  • Current Affairs
  • Tech News

AI เค•เฅ‡ เค‡เคธ เฅ›เคฎเคพเคจเฅ‡ เคฎเฅ‡เค‚ เค•เฅˆเคธเฅ‡ เคฌเคฟเคœเคฒเฅ€ เคฌเคšเคพ เคฐเคนเฅ‡ เคนเฅˆเค‚ เคฏเคน เคธเฅเคฎเคพเคฐเฅเคŸ เคชเฅเคฒเค—?

examhopeinfo@gmail.com December 21, 2025 0
Ghost Pairing Scam on Whatsapp
  • IT
  • Current Affairs
  • Tech News

เค•เฅเคฏเคพ เคนเฅˆ เคฏเคน GhostPairing Scam เค”เคฐ เคฌเคฟเคจเคพ เคชเคพเคธเคตเคฐเฅเคก เค”เคฐ เคธเคฟเคฎ เค•เฅ‡ เค•เฅเคฏเฅ‹เค‚ เคนเฅ‹ เคฐเคนเคพ เคนเฅˆ เคตเฅเคนเคพเคŸเฅเคธเคชเฅเคช เค…เค•เคพเค‰เค‚เคŸ เคนเฅˆเค•

examhopeinfo@gmail.com December 21, 2025 0
Copyright ยฉ All rights reserved for ExamHope. | MoreNews by AF themes.
Go to mobile version