Skip to content
ExamHope Logo

examhope

Primary Menu
  • Digital Logic
    • Arithmetic Operations
    • Asynchronous/Ripple Counters
    • Basic Gates
    • Boolean Algebraic Theorems
    • Codes
  • Data Structures
    • Binary Heaps
    • Binary Search
    • Binary Search Trees
    • Binary Tree
    • Binary Tree Sort
    • Bipartite Graphs
    • Complete Graph
  • Theory of Computation
    • Finite Automata
    • Finite Automaton First Example
  • Current Affairs
    • Sports News
    • Tech News
    • Bollywood News
    • Daily News
  • Database
  • Computer Network
  • Computer Organization and Architecture
  • C Language
  • Operating Systems
  • Software Engineering
  • Theory of Computation
  • About us
  • Contact Us
  • Privacy Policy
  • DMCA Policy
  • Terms and Conditions
  • Home
  • IT
  • Context-Free Grammar (CFG) for the Complement of a Non-Regular Language
  • IT
  • Non-Regular Language
  • Theory of Computation

Context-Free Grammar (CFG) for the Complement of a Non-Regular Language

examhopeinfo@gmail.com November 22, 2025 4 minutes read
Context-Free Grammar (CFG) for the Complement of a Non-Regular Language

Context-Free Grammar (CFG) for the Complement of a Non-Regular Language

Let’s explore this using a famous non-regular language, then see how to build a context-free grammar (CFG) for its complement.


1. Start with a Classic Non-Regular Language

One of the most well-known non-regular languages is:

[
L = { a^n b^n \mid n \ge 0 }
]

This language contains strings where:

  • All the a’s come first
  • All the b’s come after
  • And the number of a’s equals the number of b’s

Examples in L:

  • "" (the empty string)
  • ab
  • aabb
  • aaabbb

This language is not regular, but it is context-free.


2. What Is Its Complement?

The complement means: “All strings made of a’s and b’s that are NOT in L.”

So, any string that breaks the rule aⁿbⁿ belongs to the complement.

Examples NOT in L:

  • b… (because b appears before a)
  • aab (counts don’t match)
  • abba (a and b are mixed)
  • aaaabb (4 a’s, 2 b’s — mismatch)
  • ababab (completely unordered)

Let’s call the complement:

[
L’ = \Sigma^* – L,\ \text{where }\Sigma = {a, b}
]


**3. How to Think About L’?

Break the Mistakes into Categories**

A string is not in ( L ) if it breaks at least one rule.

The rules for L were:

  1. All a’s must come first.
  2. b’s must come after.
  3. Numbers of a’s and b’s must match.

So a string belongs to the complement ( L’ ) if:

Case 1: It starts with ‘b’

Examples:
b, bb, ba, baba

Case 2: It has a ‘b’ followed later by an ‘a’

This breaks the “all a’s before b’s” rule.
Examples:
abba, aababb, baaa

Case 3: All a’s are before all b’s, but counts do NOT match

Examples:
aaab, aabbb, aaaaabbb

By handling these cases one by one, we can build a clean grammar.


4. A Simple CFG for the Complement

We now construct a context-free grammar that produces exactly the strings from (L’).


Case 1 Grammar: Strings that start with b

S → Bstart
Bstart → bA
A → aA | bA | ε

This generates any string beginning with b.


Case 2 Grammar: A ‘b’ followed later by an ‘a’

We force a b first, then ensure that an a appears after that b.

S → WrongOrder
WrongOrder → a* b a Tail
Tail → aTail | bTail | ε

(To write it in pure CFG form, we expand a* using recursion.)


Case 3 Grammar: Right order but mismatch in counts

Here, the string looks like a^m b^n but m ≠ n.

We use two productions:

  • More a’s than b’s
  • More b’s than a’s
S → MoreA | MoreB

MoreA → a MoreA b | a MoreA | a
MoreB → a MoreB b | MoreB b | b

This ensures the counts never match.


Combined CFG (Unified Version)

To make it clean, we define:

S → S1 | S2 | S3

Where each part handles a different case:

1. Strings starting with b

S1 → bA
A → aA | bA | ε

2. Strings where b appears before a (wrong order)

S2 → X b Y a Z
X → aX | ε
Y → aY | bY | ε
Z → aZ | bZ | ε

3. Strings with correct order but mismatched counts

S3 → MoreA | MoreB

MoreA → a MoreA b | a MoreA | a
MoreB → a MoreB b | MoreB b | b

This CFG generates exactly the complement of the non-regular language (a^n b^n).


5. Simple Diagram (Conceptual View)

Below is a simple diagram showing the 3 major branches of the grammar:

                 +-------------+
                 |      S      |
                 +------+------+ 
                        |
        ---------------------------------
        |                 |             |
     +-----+           +-----+       +-------+
     | S1  |           | S2  |       |  S3   |
     +-----+           +-----+       +-------+
        |                 |             |
   Strings starting   Strings with     Correct order
      with 'b'        b…a pattern      but wrong counts

This visual simply shows how our grammar “splits” the complement into understandable categories.


6. Why Is This Useful?

Understanding CFGs for complements teaches you:

  • how to break complicated languages into manageable parts
  • how to think like a language designer
  • and how CFGs can describe languages that DFAs and NFAs can’t handle

It’s a great way to build intuition before moving toward deeper topics like PDA complement properties and closure operations.

About the Author

examhopeinfo@gmail.com

Administrator

Visit Website View All Posts

Post navigation

Previous: Context-Free Grammar for a Nonregular Language
Next: Context-Free Grammar That Verifies Addition

Related News

Vivo X200 Price Drop
  • IT
  • Current Affairs
  • Tech News

Vivo X200: जाने कितनी कम कीमत पर मिल रहा ये 9400 मिडिया टेक प्रोसेसर वाला स्मार्टफोन

examhopeinfo@gmail.com December 23, 2025 0
Samsung Galaxy S25 Plus
  • IT
  • Current Affairs
  • Tech News

Samsung Galaxy S25 Plus पर मिल रही भारी छूट ,जाने सेल प्राइस

examhopeinfo@gmail.com December 22, 2025 0
Electricity bill saving Smart Plug
  • IT
  • Current Affairs
  • Tech News

AI के इस ज़माने में कैसे बिजली बचा रहे हैं यह स्मार्ट प्लग?

examhopeinfo@gmail.com December 21, 2025 0

Recent Posts

  • Vivo X200: जाने कितनी कम कीमत पर मिल रहा ये 9400 मिडिया टेक प्रोसेसर वाला स्मार्टफोन
  • Samsung Galaxy S25 Plus पर मिल रही भारी छूट ,जाने सेल प्राइस
  • AI के इस ज़माने में कैसे बिजली बचा रहे हैं यह स्मार्ट प्लग?
  • क्या है यह GhostPairing Scam और बिना पासवर्ड और सिम के क्यों हो रहा है व्हाट्सप्प अकाउंट हैक
  • Leica कैमरे के साथ जल्द लॉन्च हो सकता है Xiaomi Ultra 17

At ExamHope, we understand that preparing for exams can be challenging, overwhelming, and sometimes stressful. That’s why we are dedicated to providing high-quality educational resources, tips, and guidance to help students and aspirants achieve their goals with confidence. Whether you are preparing for competitive exams, school tests, or professional certifications, ExamHope is here to make your learning journey smarter, easier, and more effective.

Quick links

  • About us
  • Contact Us
  • Privacy Policy
  • Terms and Conditions
  • Disclaimer
  • DMCA Policy

Category

  • Computer Network
  • Computer Organization and Architecture
  • Data Structures
  • C Language
  • Theory of Computation
  • Database

You may have missed

Vivo X200 Price Drop
  • IT
  • Current Affairs
  • Tech News

Vivo X200: जाने कितनी कम कीमत पर मिल रहा ये 9400 मिडिया टेक प्रोसेसर वाला स्मार्टफोन

examhopeinfo@gmail.com December 23, 2025 0
Samsung Galaxy S25 Plus
  • IT
  • Current Affairs
  • Tech News

Samsung Galaxy S25 Plus पर मिल रही भारी छूट ,जाने सेल प्राइस

examhopeinfo@gmail.com December 22, 2025 0
Electricity bill saving Smart Plug
  • IT
  • Current Affairs
  • Tech News

AI के इस ज़माने में कैसे बिजली बचा रहे हैं यह स्मार्ट प्लग?

examhopeinfo@gmail.com December 21, 2025 0
Ghost Pairing Scam on Whatsapp
  • IT
  • Current Affairs
  • Tech News

क्या है यह GhostPairing Scam और बिना पासवर्ड और सिम के क्यों हो रहा है व्हाट्सप्प अकाउंट हैक

examhopeinfo@gmail.com December 21, 2025 0
Copyright © All rights reserved for ExamHope. | MoreNews by AF themes.
Go to mobile version