Skip to content
ExamHope Logo

examhope

Primary Menu
  • Digital Logic
    • Arithmetic Operations
    • Asynchronous/Ripple Counters
    • Basic Gates
    • Boolean Algebraic Theorems
    • Codes
  • Data Structures
    • Binary Heaps
    • Binary Search
    • Binary Search Trees
    • Binary Tree
    • Binary Tree Sort
    • Bipartite Graphs
    • Complete Graph
  • Theory of Computation
    • Finite Automata
    • Finite Automaton First Example
  • Current Affairs
    • Sports News
    • Tech News
    • Bollywood News
    • Daily News
  • Database
  • Computer Network
  • Computer Organization and Architecture
  • C Language
  • Operating Systems
  • Software Engineering
  • Theory of Computation
  • About us
  • Contact Us
  • Privacy Policy
  • DMCA Policy
  • Terms and Conditions
  • Home
  • IT
  • Binary Heaps MCQs in Data Structure
  • IT
  • Binary Heaps
  • Data Structures

Binary Heaps MCQs in Data Structure

examhopeinfo@gmail.com October 25, 2025 13 minutes read
Binary Heaps MCQs in Data Structure

Binary Heaps MCQs in Data Structure


Binary Heaps MCQs with Solutions


1.

A max-heap is a complete binary tree in which:
A. Parent is smaller than children
B. Parent is greater than or equal to children
C. Left child is always greater than right child
D. Heap is not ordered

Answer: B
Solution:
Max-heap property: each parent โ‰ฅ its children.


2.

The minimum number of nodes in a binary heap of height 4 = ?
A. 8
B. 16
C. 15
D. 10

Answer: C
Solution:
Minimum nodes = 2^h = 2^4 = 16? Actually, minimum occurs when last level partially filled โ†’ minimum nodes = 2^h = 16 (consider height counted from 0).


3.

In a heap stored as array, left child of node at index i (0-based) = ?
A. i/2
B. 2i
C. 2i + 1
D. 2i โˆ’ 1

Answer: C
Solution:
Left child = 2i + 1, right child = 2i + 2 (0-based array).


4.

Parent of node at index i in a 0-based heap array = ?
A. i/2
B. (iโˆ’1)/2
C. 2i + 1
D. 2i โˆ’ 1

Answer: B
Solution:
Parent = floor((iโˆ’1)/2).


5.

Time complexity of insertion in a binary heap of n nodes = ?
A. O(1)
B. O(log n)
C. O(n)
D. O(n log n)

Answer: B
Solution:
Insertion โ†’ bubble-up โ†’ height = log n โ†’ O(log n).


6.

Time complexity of deleting the max element in a max-heap = ?
A. O(1)
B. O(log n)
C. O(n)
D. O(n log n)

Answer: B
Solution:
Delete root โ†’ replace with last node โ†’ heapify โ†’ O(log n).


7.

Maximum number of nodes at level i in a heap = ?
A. iยฒ
B. 2^i
C. 2^(iโˆ’1)
D. i+1

Answer: B
Solution:
Level i (root at 0) โ†’ maximum 2^i nodes.


8.

A heap with 15 nodes has how many leaf nodes?
A. 7
B. 8
C. 6
D. 9

Answer: B
Solution:
Leaf nodes = ceil(n/2) = ceil(15/2) = 8.


9.

Heap sortโ€™s worst-case time complexity = ?
A. O(nยฒ)
B. O(n log n)
C. O(n)
D. O(log n)

Answer: B
Solution:
Heap sort โ†’ build heap O(n) + extract n elements ร— O(log n) = O(n log n).


10.

Heap can be used to implement:
A. Priority queue
B. Dictionary
C. Hash table
D. Stack

Answer: A
Solution:
Heaps efficiently implement priority queues.


11.

In max-heap, which of the following is always true?
A. Root = minimum
B. Root = maximum
C. Last node = maximum
D. Heap is sorted

Answer: B
Solution:
Max-heap โ†’ root holds the maximum.


12.

Building a heap from an unordered array of n elements โ†’ time complexity:
A. O(n log n)
B. O(n)
C. O(log n)
D. O(nยฒ)

Answer: B
Solution:
Heapify bottom-up โ†’ O(n) time complexity.


13.

Heap of height h โ†’ maximum nodes = ?
A. 2^h
B. 2^(h+1) โˆ’ 1
C. hยฒ
D. 2h

Answer: B
Solution:
Complete binary tree โ†’ 2^(h+1) โˆ’ 1 nodes.


14.

Heap of n elements is represented in an array. Index of last element = ?
A. n
B. nโˆ’1
C. n+1
D. n/2

Answer: B
Solution:
0-based indexing โ†’ last index = nโˆ’1.


15.

In a min-heap, deleting minimum element requires:
A. Replace root with last node + bubble-up
B. Replace root with last node + heapify
C. Replace last node with root + heapify
D. Random deletion

Answer: B
Solution:
Delete root โ†’ replace with last โ†’ bubble-down (heapify).


16.

Max-heap property: child โ‰ค parent. True/False?
A. True
B. False

Answer: A
Solution:
By definition, max-heap parent โ‰ฅ children.


17.

Min-heap of 31 nodes โ†’ number of leaf nodes = ?
A. 15
B. 16
C. 14
D. 17

Answer: B
Solution:
Leaf nodes = ceil(n/2) = ceil(31/2) = 16.


18.

Which of the following is not possible in a heap?
A. Random search in O(1)
B. Insertion in O(log n)
C. Extract max/min in O(log n)
D. Heapify in O(n)

Answer: A
Solution:
Heap โ†’ no direct random access to find an arbitrary element in O(1).


19.

Time complexity of searching a particular element in heap = ?
A. O(log n)
B. O(n)
C. O(1)
D. O(n log n)

Answer: B
Solution:
Heap is not ordered for arbitrary search โ†’ O(n).


20.

Number of levels in heap with n nodes = ?
A. logโ‚‚ n
B. logโ‚‚(n+1)
C. n
D. โˆšn

Answer: B
Solution:
Height h = floor(logโ‚‚ n) โ†’ levels = h+1 = floor(logโ‚‚(n)) + 1 โ‰ˆ logโ‚‚(n+1).


21.

In max-heap, if root = 100, left child = 50, right child = 60, what is heap after deleting root?
A. 60 root, 50 child
B. 50 root, 60 child
C. 60 root, 100 child
D. 50 root, 100 child

Answer: A
Solution:
Delete root โ†’ replace with last โ†’ bubble-down โ†’ largest child becomes root โ†’ 60.


22.

Heap of 15 nodes โ†’ index of left child of node at index 5?
A. 10
B. 11
C. 12
D. 9

Answer: B
Solution:
Left child = 2i + 1 = 2ร—5 + 1 = 11.


23.

Heap represented as array โ†’ index of right child of node 6?
A. 12
B. 13
C. 14
D. 11

Answer: B
Solution:
Right child = 2i + 2 = 2ร—6 + 2 = 14 โ†’ wait, let’s recalc: 2*6+2=14 โœ…


24.

After inserting 45 in max-heap [100, 50, 60, 30, 40, 20], the heap = ?
A. [100, 50, 60, 30, 40, 20, 45]
B. [100, 50, 60, 30, 40, 45, 20]
C. [100, 50, 60, 45, 40, 20, 30]
D. [100, 50, 60, 30, 45, 20, 40]

Answer: A
Solution:
Insert โ†’ last position โ†’ bubble-up if parent < inserted node โ†’ 45 < 60 โ†’ no swap โ†’ [100,50,60,30,40,20,45].


25.

Heapify at root for max-heap [10, 20, 15, 30, 40] โ†’ root after heapify = ?
A. 40
B. 30
C. 20
D. 15

Answer: A
Solution:
Heapify โ†’ largest child 40 โ†’ root becomes 40 โ†’ heap property restored.


26.

Max-heap [90, 50, 80, 30, 40, 20, 70] โ†’ after inserting 85, root = ?
A. 90
B. 85
C. 100
D. 80

Answer: A
Solution:
Insert 85 at last position โ†’ bubble-up: 85 < 80? 85 > 80 โ†’ swap โ†’ new root = 90 โ†’ heap property maintained.


27.

Min-heap [10, 15, 20, 30, 40, 25] โ†’ delete root โ†’ new root = ?
A. 15
B. 20
C. 25
D. 30

Answer: A
Solution:
Replace root with last node 25 โ†’ bubble-down โ†’ swap with smaller child 15 โ†’ root = 15.


28.

Number of leaf nodes in a heap of 63 nodes = ?
A. 31
B. 32
C. 30
D. 33

Answer: B
Solution:
Leaf nodes = ceil(n/2) = ceil(63/2) = 32.


29.

Heap of height 4 โ†’ maximum nodes = ?
A. 15
B. 31
C. 16
D. 32

Answer: B
Solution:
Max nodes = 2^(h+1) โˆ’ 1 = 2^5 โˆ’ 1 = 31.


30.

Heapify operation in max-heap is called:
A. Bubble-up
B. Bubble-down
C. Insertion
D. Deletion

Answer: B
Solution:
Heapify = bubble-down to restore max-heap property.


31.

Heap represented as array โ†’ parent of node at index 12 = ?
A. 5
B. 6
C. 7
D. 4

Answer: A
Solution:
Parent = floor((iโˆ’1)/2) = floor((12โˆ’1)/2) = floor(11/2) = 5.


32.

Heap sort in ascending order uses:
A. Max-heap
B. Min-heap
C. Binary search tree
D. AVL tree

Answer: A
Solution:
Extract max repeatedly โ†’ sorted ascending.


33.

Heap of 31 nodes โ†’ last level starts at index = ?
A. 15
B. 16
C. 17
D. 14

Answer: B
Solution:
Last level nodes = ceil(n/2) = ceil(31/2) = 16 โ†’ index = 16 (0-based 15).


34.

Time complexity to build heap from unordered array of 16 elements = ?
A. O(log n)
B. O(n)
C. O(n log n)
D. O(nยฒ)

Answer: B
Solution:
Bottom-up heapify โ†’ linear time O(n).


35.

Heap property violated if:
A. Parent < child in max-heap B. Parent > child in max-heap
C. Children unordered in max-heap
D. Root maximum in max-heap

Answer: A
Solution:
Max-heap โ†’ parent must be โ‰ฅ children.


36.

Number of levels in a heap with 100 nodes = ?
A. 6
B. 7
C. 8
D. 9

Answer: C
Solution:
Height = floor(logโ‚‚ n) = floor(logโ‚‚ 100) โ‰ˆ 6 โ†’ levels = height + 1 = 7.


37.

Heapify is required after:
A. Insertion at last
B. Deletion of root
C. Both A & B
D. None

Answer: C
Solution:
Insertion โ†’ bubble-up, deletion โ†’ bubble-down โ†’ heapify needed.


38.

Heap represented as array [50, 40, 45, 30, 35, 20, 25] โ†’ insert 42 โ†’ new heap = ?
A. [50, 42, 45, 40, 35, 20, 25, 30]
B. [50, 42, 45, 30, 35, 20, 25, 40]
C. [50, 40, 45, 30, 35, 20, 25, 42]
D. [50, 45, 42, 30, 35, 20, 25, 40]

Answer: A
Solution:
Insert 42 โ†’ last position โ†’ bubble-up โ†’ swap with 40 โ†’ heap maintained.


39.

Deleting max element from max-heap [100, 90, 80, 70, 60] โ†’ new root = ?
A. 90
B. 80
C. 70
D. 60

Answer: A
Solution:
Delete root โ†’ replace with last 60 โ†’ bubble-down โ†’ swap with larger child 90 โ†’ root = 90.


40.

Max-heap of 15 nodes โ†’ last level indices = ?
A. 7โ€“14
B. 8โ€“15
C. 7โ€“15
D. 8โ€“14

Answer: A
Solution:
Last level starts at ceil(n/2) โ†’ 8th node (index 7) โ†’ indices 7โ€“14.


41.

Heap of n elements โ†’ maximum height = ?
A. logโ‚‚ n
B. nโˆ’1
C. n
D. 2 logโ‚‚ n

Answer: B
Solution:
Degenerate heap (all right children) โ†’ height = nโˆ’1.


42.

Min-heap [10, 15, 20, 30, 25] โ†’ insert 5 โ†’ new root = ?
A. 5
B. 10
C. 15
D. 20

Answer: A
Solution:
Insert 5 โ†’ bubble-up โ†’ root updated โ†’ min-heap property restored.


43.

Heap sort complexity:
A. O(nยฒ)
B. O(n log n)
C. O(n)
D. O(log n)

Answer: B
Solution:
Build heap O(n) + n extractions ร— O(log n) = O(n log n).


44.

Heap represented as array โ†’ index of right child of node 7 = ?
A. 14
B. 15
C. 13
D. 16

Answer: A
Solution:
Right child = 2i + 2 = 2ร—7 + 2 = 16 (0-based).


45.

Heap of 100 nodes โ†’ number of internal nodes = ?
A. 50
B. 49
C. 48
D. 51

Answer: B
Solution:
Internal nodes = floor(n/2) = floor(100/2) = 50? Wait, internal = n โˆ’ leaf nodes = 100 โˆ’ ceil(100/2) = 100 โˆ’ 50 = 50.


46.

Heap insertion may require maximum swaps = ?
A. logโ‚‚ n
B. n
C. n/2
D. โˆšn

Answer: A
Solution:
Insertion โ†’ bubble-up โ†’ max logโ‚‚ n swaps.


47.

Heapify at index i in max-heap โ†’ time complexity = ?
A. O(log n)
B. O(n)
C. O(1)
D. O(n log n)

Answer: A
Solution:
Bubble-down along height โ†’ O(log n).


48.

Heap property violated after insertion of 120 in max-heap root 100 โ†’ fix requires:
A. Swap with root
B. Bubble-up until root
C. Bubble-down
D. No swap

Answer: B
Solution:
Insert โ†’ bubble-up โ†’ node may reach root.


49.

Binary heap is:
A. Complete binary tree
B. Full binary tree
C. BST
D. AVL tree

Answer: A
Solution:
Heap = complete binary tree, partially filled last level.


50.

Heap sort descending โ†’ use:
A. Max-heap
B. Min-heap
C. BST
D. AVL

Answer: B
Solution:
Extract min repeatedly โ†’ descending sorted array.


51.

Min-heap โ†’ smallest element always at:
A. Root
B. Leaf
C. Leftmost node
D. Rightmost node

Answer: A
Solution:
Min-heap property โ†’ root holds minimum.


52.

Max-heap root = 200, children = 150, 180 โ†’ delete root โ†’ new root = ?
A. 180
B. 150
C. 200
D. 150 or 180

Answer: A
Solution:
Delete root โ†’ replace with last node 180 โ†’ bubble-down โ†’ largest child becomes root.


53.

Heapify bottom-up builds heap in:
A. O(nยฒ)
B. O(n log n)
C. O(n)
D. O(log n)

Answer: C
Solution:
Bottom-up heap construction โ†’ linear time.


54.

Heap with n nodes โ†’ number of comparisons for extract-max worst-case = ?
A. logโ‚‚ n
B. n
C. n log n
D. 1

Answer: A
Solution:
Extract max โ†’ bubble-down along height โ†’ logโ‚‚ n comparisons.


55.

Heap represented as array โ†’ parent of node at index 15 = ?
A. 7
B. 6
C. 8
D. 14

Answer: A
Solution:
Parent = floor((iโˆ’1)/2) = floor((15โˆ’1)/2) = floor(14/2) = 7.


56.

Heap insertion โ†’ worst-case time complexity = ?
A. O(n)
B. O(log n)
C. O(1)
D. O(n log n)

Answer: B
Solution:
Insertion โ†’ bubble-up along height โ†’ O(log n).


57.

Heap of 7 nodes โ†’ leaf nodes = ?
A. 3
B. 4
C. 5
D. 2

Answer: B
Solution:
Leaf nodes = ceil(n/2) = ceil(7/2) = 4.


58.

Max-heap [100, 80, 90, 50, 60, 40] โ†’ insert 85 โ†’ root = ?
A. 100
B. 85
C. 90
D. 80

Answer: A
Solution:
Insert 85 โ†’ bubble-up โ†’ 85 < 90 โ†’ bubble-up stops โ†’ root unchanged.


59.

Heap represented as array [10, 15, 20, 30, 40] โ†’ build max-heap โ†’ root = ?
A. 40
B. 30
C. 20
D. 15

Answer: A
Solution:
Build max-heap โ†’ largest element 40 โ†’ root.


60.

Heap of n nodes โ†’ height = ?
A. logโ‚‚ n
B. n
C. n/2
D. โˆšn

Answer: A
Solution:
Complete binary tree โ†’ height = floor(logโ‚‚ n).


61.

Max-heap [90, 80, 70, 60, 50, 40, 30] โ†’ after inserting 85 โ†’ new heap = ?
A. [90, 85, 70, 80, 50, 40, 30, 60]
B. [90, 80, 85, 60, 50, 40, 30, 70]
C. [90, 85, 70, 60, 80, 40, 30, 50]
D. [90, 80, 85, 60, 50, 40, 30, 70]

Answer: D
Solution:
Insert 85 โ†’ last position โ†’ bubble-up โ†’ swap with parent if necessary โ†’ heap property maintained.


62.

Min-heap [10, 15, 20, 25, 30, 35, 40] โ†’ insert 5 โ†’ new root = ?
A. 10
B. 5
C. 15
D. 20

Answer: B
Solution:
Insert 5 โ†’ bubble-up โ†’ reaches root โ†’ root = 5.


63.

Heap of 31 nodes โ†’ number of internal nodes = ?
A. 16
B. 15
C. 14
D. 17

Answer: B
Solution:
Internal nodes = n โˆ’ leaf nodes = 31 โˆ’ ceil(31/2) = 31 โˆ’ 16 = 15.


64.

Heap sort ascending โ†’ array initially [40, 10, 20, 30, 15] โ†’ first extracted element = ?
A. 10
B. 15
C. 20
D. 40

Answer: D
Solution:
Max-heap โ†’ root = maximum โ†’ first extracted = 40.


65.

Max-heap โ†’ number of swaps in insertion worst-case = ?
A. logโ‚‚ n
B. n
C. 2 logโ‚‚ n
D. 1

Answer: A
Solution:
Insertion โ†’ bubble-up โ†’ worst-case swaps = height = logโ‚‚ n.


66.

Heap of 100 nodes โ†’ number of leaf nodes = ?
A. 50
B. 51
C. 49
D. 52

Answer: B
Solution:
Leaf nodes = ceil(n/2) = ceil(100/2) = 50 โ†’ double-check: last level partially filled โ†’ 51 leaf nodes.


67.

Heapify at index i in max-heap โ†’ time complexity = ?
A. O(log n)
B. O(n)
C. O(1)
D. O(n log n)

Answer: A
Solution:
Heapify โ†’ bubble-down along height โ†’ O(log n).


68.

Heap represented as array [100, 90, 80, 70, 60, 50, 40] โ†’ delete root โ†’ new heap = ?
A. [90, 70, 80, 40, 60, 50]
B. [90, 70, 80, 50, 60, 40]
C. [80, 70, 90, 50, 60, 40]
D. [90, 80, 70, 50, 60, 40]

Answer: B
Solution:
Delete root โ†’ replace with last node 40 โ†’ bubble-down โ†’ largest child swaps โ†’ heap property restored.


69.

Heap of 15 nodes โ†’ last level node indices = ?
A. 7โ€“14
B. 8โ€“15
C. 7โ€“15
D. 8โ€“14

Answer: A
Solution:
Last level starts at ceil(n/2) โ†’ indices 7โ€“14 (0-based).


70.

Heap insertion โ†’ worst-case time complexity = ?
A. O(n)
B. O(log n)
C. O(1)
D. O(n log n)

Answer: B
Solution:
Bubble-up along height โ†’ O(log n).


71.

Min-heap โ†’ root deletion โ†’ new root replaced with last element โ†’ operation called:
A. Bubble-up
B. Bubble-down (heapify)
C. Swap
D. Rebuild

Answer: B
Solution:
Delete root โ†’ last element replaces root โ†’ bubble-down to restore heap property.


72.

Heap represented as array โ†’ left child of node index 10 = ?
A. 20
B. 21
C. 22
D. 19

Answer: B
Solution:
Left child = 2i + 1 = 2ร—10 + 1 = 21.


73.

Heap property violated โ†’ operation to restore = ?
A. Insertion
B. Heapify
C. Deletion
D. Traversal

Answer: B
Solution:
Heapify restores max/min-heap property after insertion/deletion.


74.

Heap sort descending โ†’ use:
A. Max-heap
B. Min-heap
C. BST
D. AVL

Answer: B
Solution:
Min-heap โ†’ extract min repeatedly โ†’ sorted descending.


75.

Heap of 50 nodes โ†’ max height = ?
A. 5
B. 6
C. 7
D. 8

Answer: C
Solution:
Height = floor(logโ‚‚ n) = floor(logโ‚‚ 50) โ‰ˆ 5 โ†’ max height = 5 โ†’ levels = 6 โ†’ height = 5.


76.

Max-heap โ†’ root = 100, children = 90, 80 โ†’ delete root โ†’ new root = ?
A. 90
B. 80
C. 100
D. 85

Answer: A
Solution:
Delete root โ†’ last node 80 replaces โ†’ bubble-down โ†’ largest child 90 becomes root.


77.

Heap insertion โ†’ element placed initially at:
A. Root
B. Leaf (last)
C. Middle
D. Any random position

Answer: B
Solution:
Insert at last position โ†’ bubble-up.


78.

Heap of 31 nodes โ†’ number of swaps to heapify root = ?
A. 1
B. logโ‚‚ 31 โ‰ˆ 5
C. 31
D. 2

Answer: B
Solution:
Heapify โ†’ swaps along height โ†’ logโ‚‚ n = 5 swaps maximum.


79.

Heap of n nodes โ†’ number of null child pointers = ?
A. n
B. n+1
C. nโˆ’1
D. 2n

Answer: B
Solution:
Complete binary tree โ†’ null child links = n + 1.


80.

Heap represented as array โ†’ right child of index 7 = ?
A. 14
B. 15
C. 13
D. 16

Answer: B
Solution:
Right child = 2i + 2 = 2ร—7 + 2 = 16 โ†’ 0-based โ†’ index = 16.


81.

Max-heap โ†’ number of leaf nodes = ?
A. ceil(n/2)
B. floor(n/2)
C. n/3
D. logโ‚‚ n

Answer: A
Solution:
Leaf nodes = ceil(n/2).


82.

Heap of 20 nodes โ†’ number of internal nodes = ?
A. 9
B. 10
C. 11
D. 12

Answer: B
Solution:
Internal nodes = n โˆ’ leaf nodes = 20 โˆ’ ceil(20/2) = 20 โˆ’ 10 = 10.


83.

Heap โ†’ worst-case search complexity = ?
A. O(log n)
B. O(n)
C. O(1)
D. O(n log n)

Answer: B
Solution:
Heap not ordered for arbitrary search โ†’ linear search required โ†’ O(n).


84.

Heap of n elements โ†’ height = logโ‚‚ n. True/False?
A. True
B. False

Answer: A
Solution:
Complete binary tree โ†’ height โ‰ˆ logโ‚‚ n.


85.

Heap of 10 nodes โ†’ last level indices = ?
A. 4โ€“9
B. 5โ€“9
C. 6โ€“10
D. 5โ€“10

Answer: B
Solution:
Last level starts at ceil(n/2) = ceil(10/2) = 5 โ†’ indices 5โ€“9.


86.

Max-heap โ†’ extract-max โ†’ complexity = ?
A. O(1)
B. O(log n)
C. O(n)
D. O(n log n)

Answer: B
Solution:
Bubble-down along height โ†’ O(log n).


87.

Heap sort โ†’ first step:
A. Build heap
B. Extract max/min
C. Swap elements
D. Insert elements

Answer: A
Solution:
Heap sort โ†’ build heap first โ†’ then repeatedly extract max/min.


88.

Heap represented as array โ†’ parent of index 12 = ?
A. 6
B. 5
C. 7
D. 8

Answer: B
Solution:
Parent = floor((iโˆ’1)/2) = floor((12โˆ’1)/2) = 5.


89.

Min-heap โ†’ root deletion โ†’ new root replaced by:
A. First element
B. Last element
C. Middle element
D. Random element

Answer: B
Solution:
Replace root with last element โ†’ bubble-down โ†’ maintain min-heap.


90.

Heap insertion โ†’ number of swaps in best-case = ?
A. 0
B. 1
C. logโ‚‚ n
D. n

Answer: A
Solution:
Best-case โ†’ inserted element โ‰ค parent โ†’ no swaps.


91.

Heap sort โ†’ ascending โ†’ uses which heap type?
A. Max-heap
B. Min-heap
C. Binary tree
D. BST

Answer: A
Solution:
Max-heap โ†’ repeatedly extract max โ†’ ascending sorted array.


92.

Heap of 31 nodes โ†’ height = ?
A. 4
B. 5
C. 6
D. 7

Answer: B
Solution:
Height = floor(logโ‚‚ 31) = 4 โ†’ levels = height +1 = 5.


93.

Heap โ†’ number of swaps in deletion worst-case = ?
A. logโ‚‚ n
B. n
C. 2 logโ‚‚ n
D. 1

Answer: A
Solution:
Bubble-down along height โ†’ max swaps = logโ‚‚ n.


94.

Heap represented as array โ†’ index of left child of index 14 = ?
A. 28
B. 29
C. 27
D. 30

Answer: B
Solution:
Left child = 2i + 1 = 2ร—14 + 1 = 29.


95.

Heap insertion may require number of swaps = ?
A. logโ‚‚ n
B. n
C. nยฒ
D. 1

Answer: A
Solution:
Insertion โ†’ bubble-up along height โ†’ max logโ‚‚ n swaps.


96.

Heap of 100 nodes โ†’ number of internal nodes = ?
A. 50
B. 49
C. 48
D. 51

Answer: A
Solution:
Internal nodes = n โˆ’ leaf nodes = 100 โˆ’ ceil(100/2) = 50.


97.

Heap sort โ†’ time complexity = ?
A. O(nยฒ)
B. O(n log n)
C. O(n)
D. O(log n)

Answer: B
Solution:
Heap sort โ†’ build heap O(n) + n extractions ร— O(log n) = O(n log n).


98.

Heap โ†’ after insertion โ†’ operation used to restore property = ?
A. Bubble-up
B. Bubble-down
C. Swap
D. Rebuild

Answer: A
Solution:
Insertion โ†’ bubble-up to maintain heap property.


99.

Heap โ†’ after deletion โ†’ operation used = ?
A. Bubble-down
B. Bubble-up
C. Swap
D. None

Answer: A
Solution:
Delete root โ†’ last element replaces root โ†’ bubble-down (heapify).


100.

Heap โ†’ maximum nodes at level 3 = ?
A. 8
B. 4
C. 2
D. 16

Answer: A
Solution:
Level i โ†’ max nodes = 2^i โ†’ 2ยณ = 8.


About the Author

examhopeinfo@gmail.com

Administrator

Visit Website View All Posts

Post navigation

Previous: Trees MCQs in Data Structures for Exam
Next: Graphs MCQs in Data Structure

Related News

Vivo X200 Price Drop
  • IT
  • Current Affairs
  • Tech News

Vivo X200: เคœเคพเคจเฅ‡ เค•เคฟเคคเคจเฅ€ เค•เคฎ เค•เฅ€เคฎเคค เคชเคฐ เคฎเคฟเคฒ เคฐเคนเคพ เคฏเฅ‡ 9400 เคฎเคฟเคกเคฟเคฏเคพ เคŸเฅ‡เค• เคชเฅเคฐเฅ‹เคธเฅ‡เคธเคฐ เคตเคพเคฒเคพ เคธเฅเคฎเคพเคฐเฅเคŸเคซเฅ‹เคจ

examhopeinfo@gmail.com December 23, 2025 0
Samsung Galaxy S25 Plus
  • IT
  • Current Affairs
  • Tech News

Samsung Galaxy S25 Plus เคชเคฐ เคฎเคฟเคฒ เคฐเคนเฅ€ เคญเคพเคฐเฅ€ เค›เฅ‚เคŸ ,เคœเคพเคจเฅ‡ เคธเฅ‡เคฒ เคชเฅเคฐเคพเค‡เคธ

examhopeinfo@gmail.com December 22, 2025 0
Electricity bill saving Smart Plug
  • IT
  • Current Affairs
  • Tech News

AI เค•เฅ‡ เค‡เคธ เฅ›เคฎเคพเคจเฅ‡ เคฎเฅ‡เค‚ เค•เฅˆเคธเฅ‡ เคฌเคฟเคœเคฒเฅ€ เคฌเคšเคพ เคฐเคนเฅ‡ เคนเฅˆเค‚ เคฏเคน เคธเฅเคฎเคพเคฐเฅเคŸ เคชเฅเคฒเค—?

examhopeinfo@gmail.com December 21, 2025 0

Recent Posts

  • Vivo X200: เคœเคพเคจเฅ‡ เค•เคฟเคคเคจเฅ€ เค•เคฎ เค•เฅ€เคฎเคค เคชเคฐ เคฎเคฟเคฒ เคฐเคนเคพ เคฏเฅ‡ 9400 เคฎเคฟเคกเคฟเคฏเคพ เคŸเฅ‡เค• เคชเฅเคฐเฅ‹เคธเฅ‡เคธเคฐ เคตเคพเคฒเคพ เคธเฅเคฎเคพเคฐเฅเคŸเคซเฅ‹เคจ
  • Samsung Galaxy S25 Plus เคชเคฐ เคฎเคฟเคฒ เคฐเคนเฅ€ เคญเคพเคฐเฅ€ เค›เฅ‚เคŸ ,เคœเคพเคจเฅ‡ เคธเฅ‡เคฒ เคชเฅเคฐเคพเค‡เคธ
  • AI เค•เฅ‡ เค‡เคธ เฅ›เคฎเคพเคจเฅ‡ เคฎเฅ‡เค‚ เค•เฅˆเคธเฅ‡ เคฌเคฟเคœเคฒเฅ€ เคฌเคšเคพ เคฐเคนเฅ‡ เคนเฅˆเค‚ เคฏเคน เคธเฅเคฎเคพเคฐเฅเคŸ เคชเฅเคฒเค—?
  • เค•เฅเคฏเคพ เคนเฅˆ เคฏเคน GhostPairing Scam เค”เคฐ เคฌเคฟเคจเคพ เคชเคพเคธเคตเคฐเฅเคก เค”เคฐ เคธเคฟเคฎ เค•เฅ‡ เค•เฅเคฏเฅ‹เค‚ เคนเฅ‹ เคฐเคนเคพ เคนเฅˆ เคตเฅเคนเคพเคŸเฅเคธเคชเฅเคช เค…เค•เคพเค‰เค‚เคŸ เคนเฅˆเค•
  • Leica เค•เฅˆเคฎเคฐเฅ‡ เค•เฅ‡ เคธเคพเคฅ เคœเคฒเฅเคฆ เคฒเฅ‰เคจเฅเคš เคนเฅ‹ เคธเค•เคคเคพ เคนเฅˆ Xiaomi Ultra 17

At ExamHope, we understand that preparing for exams can be challenging, overwhelming, and sometimes stressful. Thatโ€™s why we are dedicated to providing high-quality educational resources, tips, and guidance to help students and aspirants achieve their goals with confidence. Whether you are preparing for competitive exams, school tests, or professional certifications, ExamHope is here to make your learning journey smarter, easier, and more effective.

Quick links

  • About us
  • Contact Us
  • Privacy Policy
  • Terms and Conditions
  • Disclaimer
  • DMCA Policy

Category

  • Computer Network
  • Computer Organization and Architecture
  • Data Structures
  • C Language
  • Theory of Computation
  • Database

You may have missed

Vivo X200 Price Drop
  • IT
  • Current Affairs
  • Tech News

Vivo X200: เคœเคพเคจเฅ‡ เค•เคฟเคคเคจเฅ€ เค•เคฎ เค•เฅ€เคฎเคค เคชเคฐ เคฎเคฟเคฒ เคฐเคนเคพ เคฏเฅ‡ 9400 เคฎเคฟเคกเคฟเคฏเคพ เคŸเฅ‡เค• เคชเฅเคฐเฅ‹เคธเฅ‡เคธเคฐ เคตเคพเคฒเคพ เคธเฅเคฎเคพเคฐเฅเคŸเคซเฅ‹เคจ

examhopeinfo@gmail.com December 23, 2025 0
Samsung Galaxy S25 Plus
  • IT
  • Current Affairs
  • Tech News

Samsung Galaxy S25 Plus เคชเคฐ เคฎเคฟเคฒ เคฐเคนเฅ€ เคญเคพเคฐเฅ€ เค›เฅ‚เคŸ ,เคœเคพเคจเฅ‡ เคธเฅ‡เคฒ เคชเฅเคฐเคพเค‡เคธ

examhopeinfo@gmail.com December 22, 2025 0
Electricity bill saving Smart Plug
  • IT
  • Current Affairs
  • Tech News

AI เค•เฅ‡ เค‡เคธ เฅ›เคฎเคพเคจเฅ‡ เคฎเฅ‡เค‚ เค•เฅˆเคธเฅ‡ เคฌเคฟเคœเคฒเฅ€ เคฌเคšเคพ เคฐเคนเฅ‡ เคนเฅˆเค‚ เคฏเคน เคธเฅเคฎเคพเคฐเฅเคŸ เคชเฅเคฒเค—?

examhopeinfo@gmail.com December 21, 2025 0
Ghost Pairing Scam on Whatsapp
  • IT
  • Current Affairs
  • Tech News

เค•เฅเคฏเคพ เคนเฅˆ เคฏเคน GhostPairing Scam เค”เคฐ เคฌเคฟเคจเคพ เคชเคพเคธเคตเคฐเฅเคก เค”เคฐ เคธเคฟเคฎ เค•เฅ‡ เค•เฅเคฏเฅ‹เค‚ เคนเฅ‹ เคฐเคนเคพ เคนเฅˆ เคตเฅเคนเคพเคŸเฅเคธเคชเฅเคช เค…เค•เคพเค‰เค‚เคŸ เคนเฅˆเค•

examhopeinfo@gmail.com December 21, 2025 0
Copyright ยฉ All rights reserved for ExamHope. | MoreNews by AF themes.
Go to mobile version