Skip to content
ExamHope Logo

examhope

Primary Menu
  • Digital Logic
    • Arithmetic Operations
    • Asynchronous/Ripple Counters
    • Basic Gates
    • Boolean Algebraic Theorems
    • Codes
  • Data Structures
    • Binary Heaps
    • Binary Search
    • Binary Search Trees
    • Binary Tree
    • Binary Tree Sort
    • Bipartite Graphs
    • Complete Graph
  • Theory of Computation
    • Finite Automata
    • Finite Automaton First Example
  • Current Affairs
    • Sports News
    • Tech News
    • Bollywood News
    • Daily News
  • Database
  • Computer Network
  • Computer Organization and Architecture
  • C Language
  • Operating Systems
  • Software Engineering
  • Theory of Computation
  • About us
  • Contact Us
  • Privacy Policy
  • DMCA Policy
  • Terms and Conditions
  • Home
  • IT
  • Asymptotic Worst-Case Time Complexity MCQs
  • Time Complexity
  • Algorithms
  • IT

Asymptotic Worst-Case Time Complexity MCQs

examhopeinfo@gmail.com November 3, 2025 17 minutes read
Asymptotic Worst-Case Time Complexity

Asymptotic Worst-Case Time Complexity


Asymptotic Worst-Case Time Complexity MCQs (GATE – Algorithms)


Q1. If an algorithm’s running time is given by T(n) = 3n³ + 5n² + 10, what is its asymptotic worst-case time complexity?
A) O(n²)
B) O(n³)
C) O(n)
D) O(log n)
✅ Answer: B
Explanation: Highest order term dominates → O(n³).


Q2. For an algorithm with T(n) = n log n + 100n, asymptotic worst-case complexity is:
A) O(n)
B) O(n log n)
C) O(n²)
D) O(log n)
✅ Answer: B
Explanation: Dominant term = n log n → O(n log n).


Q3. If T(n) = 5T(n/2) + n², what is the asymptotic time complexity?
A) O(n² log n)
B) O(n²)
C) O(n^(log₂5))
D) O(n³)
✅ Answer: C
Explanation: Using Master Theorem, a = 5, b = 2 → n^(log₂5) ≈ n².32 dominates.


Q4. The function 2ⁿ grows asymptotically faster than:
A) n³
B) n log n
C) n!
D) Both A and B
✅ Answer: D
Explanation: 2ⁿ > all polynomial functions asymptotically.


Q5. If an algorithm takes T(n) = 4T(n/2) + n, its asymptotic bound is:
A) O(n²)
B) O(n log n)
C) O(n)
D) O(n² log n)
✅ Answer: A
Explanation: By Master Theorem, a=4, b=2, f(n)=n ⇒ n^(log₂4)=n² > n → O(n²).


Q6. The asymptotic complexity of matrix multiplication using Strassen’s algorithm is:
A) O(n³)
B) O(n².81)
C) O(n²)
D) O(n log n)
✅ Answer: B
Explanation: Strassen’s method reduces complexity to O(n^2.81).


Q7. If an algorithm requires O(n²) operations for input size n = 500, doubling n will approximately multiply execution time by:
A) 2
B) 4
C) 8
D) 16
✅ Answer: B
Explanation: Quadratic growth → (2n)² = 4× more operations.


Q8. Given T(n) = 2T(n/2) + n², time complexity = ?
A) O(n²)
B) O(n log n)
C) O(n² log n)
D) O(n³)
✅ Answer: C
Explanation: a=2, b=2 → n^(log₂2)=n; f(n)=n² dominates → O(n² log n).


Q9. If algorithm A has complexity O(n²) and algorithm B has O(n log n), which performs better for large n?
A) A
B) B
C) Both same
D) Depends on constants
✅ Answer: B
Explanation: n log n grows slower than n² for large n.


Q10. If T(n) = 7T(n/2) + n², asymptotic complexity is:
A) O(n²)
B) O(n³)
C) O(n^(log₂7))
D) O(n² log n)
✅ Answer: C
Explanation: log₂7 ≈ 2.807 → O(n^2.807).


Q11. Which of the following grows fastest asymptotically?
A) n² log n
B) 2ⁿ
C) n³
D) n!
✅ Answer: D
Explanation: n! > 2ⁿ > n³ > n² log n for large n.


Q12. If f(n) = O(g(n)), which statement is true?
A) f(n) grows faster
B) f(n) grows slower or equal
C) f(n) grows exponentially
D) None
✅ Answer: B
Explanation: Big-O gives upper bound; f(n) ≤ constant × g(n).


Q13. The asymptotic worst-case time for binary search is:
A) O(n)
B) O(log n)
C) O(n log n)
D) O(1)
✅ Answer: B
Explanation: Each comparison halves the search space.


Q14. Which of the following is asymptotically smallest?
A) n log n
B) n²
C) log² n
D) n
✅ Answer: C
Explanation: log² n grows slower than any linear or superlinear function.


Q15. For recurrence T(n) = T(n−1) + n, the asymptotic time complexity is:
A) O(n)
B) O(n log n)
C) O(n²)
D) O(log n)
✅ Answer: C
Explanation: Summing series n + (n−1) + … + 1 = O(n²).


Q16. An algorithm’s running time doubles whenever input size increases by 1. The time complexity is approximately:
A) O(n)
B) O(2ⁿ)
C) O(log n)
D) O(n²)
✅ Answer: B
Explanation: Doubling time per unit growth implies exponential.


Q17. If T(n) = T(n/4) + 1, what’s its complexity?
A) O(log n)
B) O(n)
C) O(1)
D) O(n log n)
✅ Answer: A
Explanation: Problem size reduces exponentially → O(log n).


Q18. If an algorithm runs in O(n log n), and takes 2 ms for n = 1,000, what’s approximate time for n = 8,000?
A) 16 ms
B) 24 ms
C) 48 ms
D) 64 ms
✅ Answer: C
Explanation: (n log n) ratio ≈ 8×(log 8000 / log 1000) ≈ 8×1.26 ≈ 10× increase → 2×10=20 ms → ~48 ms including constants.


Q19. The time complexity of insertion sort in worst case is:
A) O(n²)
B) O(n log n)
C) O(log n)
D) O(n)
✅ Answer: A
Explanation: Each insertion may compare with all previous elements → n(n−1)/2 comparisons.


Q20. For Quick Sort in worst case, time complexity is:
A) O(n log n)
B) O(n²)
C) O(n)
D) O(log n)
✅ Answer: B
Explanation: Unbalanced partitions lead to quadratic recursion.


Q21. If T(n) = 3T(n/3) + n, what’s complexity?
A) O(n)
B) O(n log n)
C) O(n²)
D) O(log n)
✅ Answer: B
Explanation: a=b=3 → f(n)=n same as n^(log₃3)=n → O(n log n).


Q22. Which asymptotic notation gives a tight bound?
A) O
B) Ω
C) Θ
D) None
✅ Answer: C
Explanation: Θ provides both upper and lower bounds.


Q23. Which grows faster asymptotically?
A) n log n
B) n^1.5
C) n²
D) n!
✅ Answer: D
Explanation: n! dominates all polynomial functions.


Q24. The asymptotic worst-case complexity of Heap Sort is:
A) O(n log n)
B) O(n²)
C) O(n)
D) O(log n)
✅ Answer: A
Explanation: Both heap construction and deletions take O(n log n).


Q25. For T(n) = 2T(n/2) + n log n, complexity = ?
A) O(n log² n)
B) O(n log n)
C) O(n²)
D) O(n³)
✅ Answer: A
Explanation: f(n)=n log n > n^(log₂2)=n → O(n log² n).


Q26. The function n^(1.5) grows faster than:
A) n log n
B) n²
C) 2ⁿ
D) n!
✅ Answer: A
Explanation: 1.5 > 1, so n^1.5 > n log n asymptotically.


Q27. If algorithm A takes O(n²) and B takes O(2ⁿ), which is better for large n?
A) A
B) B
C) Both same
D) Cannot determine
✅ Answer: A
Explanation: Exponential growth dominates polynomial growth.


Q28. The asymptotic complexity of computing Fibonacci recursively is:
A) O(2ⁿ)
B) O(n²)
C) O(n log n)
D) O(n)
✅ Answer: A
Explanation: Recursive calls branch exponentially.


Q29. Merge Sort’s worst case asymptotic complexity is:
A) O(n²)
B) O(n log n)
C) O(n)
D) O(log n)
✅ Answer: B
Explanation: Divide and conquer always yields O(n log n).


Q30. An algorithm performs n³ + 4n log n + 7 operations. Its asymptotic time complexity = ?
A) O(n³)
B) O(n log n)
C) O(log n)
D) O(n²)
✅ Answer: A
Explanation: Highest-order term dominates.


💠 Asymptotic Worst-Case Time Complexity — GATE Level MCQs (Q31–Q100)


Q31. The time complexity of binary search on a sorted array of 1024 elements is approximately equal to:
A) 5
B) 8
C) 10
D) 100
✅ Answer: C
Explanation: log₂(1024) = 10 → at most 10 comparisons in worst case → O(log n).


Q32. If T(n) = 4T(n/3) + n, the asymptotic complexity is:
A) O(n)
B) O(n log n)
C) O(n^(log₃4))
D) O(n²)
✅ Answer: C
Explanation: log₃4 ≈ 1.26 → O(n^1.26) by Master Theorem.


Q33. If an algorithm has complexity O(√n), doubling the input size multiplies running time by approximately:
A) 1.4
B) 2
C) 3
D) 4
✅ Answer: A
Explanation: √(2n)/√n = √2 ≈ 1.414.


Q34. The asymptotic complexity of computing factorial using recursion is:
A) O(n)
B) O(n²)
C) O(2ⁿ)
D) O(log n)
✅ Answer: A
Explanation: Each recursive call decrements n by 1 → n calls → O(n).


Q35. If T(n) = T(n/2) + O(1), complexity is:
A) O(n)
B) O(log n)
C) O(n log n)
D) O(1)
✅ Answer: B
Explanation: Reducing problem size by half each time → logarithmic depth recursion.


Q36. Which function dominates asymptotically?
A) n² log n
B) n²
C) n log² n
D) n² + n log n
✅ Answer: A
Explanation: n² log n > n² for large n.


Q37. The function log₁₀n is asymptotically equivalent to:
A) log₂n
B) n
C) n²
D) 2ⁿ
✅ Answer: A
Explanation: All logarithms differ only by constant factor → Θ(log n).


Q38. The function 3ⁿ grows asymptotically faster than:
A) 2ⁿ
B) n³
C) n log n
D) All of these
✅ Answer: D
Explanation: Exponential dominates all polynomial/logarithmic functions.


Q39. For T(n) = T(n/2) + n², the asymptotic bound is:
A) O(n²)
B) O(n² log n)
C) O(n log n)
D) O(log n)
✅ Answer: A
Explanation: f(n)=n² dominates n^(log₂1)=n⁰ → O(n²).


Q40. If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = ?
A) O(h(n))
B) Θ(h(n))
C) Ω(h(n))
D) None
✅ Answer: A
Explanation: Big-O is transitive → upper bound carries through.


Q41. Which of the following is not a valid asymptotic notation?
A) O(n log n)
B) Θ(n²)
C) Ω(n³)
D) µ(n log n)
✅ Answer: D
Explanation: µ notation does not exist in asymptotic analysis.


Q42. The asymptotic time complexity of linear search in a sorted array is:
A) O(log n)
B) O(n)
C) O(1)
D) O(n log n)
✅ Answer: B
Explanation: Even in sorted array, without binary search, each element must be checked.


Q43. If an algorithm runs in 0.5n³ + 20n² + 100n time, it belongs to:
A) O(n³)
B) O(n²)
C) O(n log n)
D) Θ(n)
✅ Answer: A
Explanation: Highest-order term dominates asymptotically.


Q44. If T(n) = 3T(n/2) + n, the asymptotic complexity is:
A) O(n log n)
B) O(n^(log₂3))
C) O(n²)
D) O(n)
✅ Answer: B
Explanation: log₂3 ≈ 1.585 → O(n^1.585).


Q45. The asymptotic complexity of the best comparison-based sorting algorithm is:
A) O(n²)
B) O(n log n)
C) O(n)
D) O(log n)
✅ Answer: B
Explanation: Lower bound for comparison-based sorting = Ω(n log n).


Q46. If f(n) = Θ(n²) and g(n) = Θ(n³), then f(n) = ?
A) o(g(n))
B) Ω(g(n))
C) Θ(g(n))
D) None
✅ Answer: A
Explanation: f grows slower than g → little-o relation.


Q47. Which one has the same asymptotic order as n³ + 100n² + 50?
A) O(n³)
B) O(n²)
C) O(n)
D) O(1)
✅ Answer: A
Explanation: Highest order term dominates.


Q48. Which asymptotic notation represents lower bound?
A) O
B) Θ
C) Ω
D) None
✅ Answer: C
Explanation: Ω provides asymptotic lower bound.


Q49. If an algorithm takes 5n log n + 10n time, the worst-case complexity is:
A) O(n log n)
B) O(n²)
C) O(log n)
D) O(n)
✅ Answer: A
Explanation: n log n dominates linear term.


Q50. Which one is the tightest bound for T(n) = n² + 5n log n + 100?
A) O(n³)
B) Θ(n²)
C) Ω(n² log n)
D) O(log n)
✅ Answer: B
Explanation: Dominant term n² → Θ(n²).


Q51. If T(n) = 2T(n/4) + √n, complexity = ?
A) O(n)
B) O(√n log n)
C) O(√n)
D) O(log n)
✅ Answer: C
Explanation: n^(log₄2)=√n, f(n)=√n → T(n)=Θ(√n log n) ≈ O(√n log n).


Q52. The asymptotic complexity of traversing a graph with BFS is:
A) O(V + E)
B) O(V²)
C) O(E log V)
D) O(log E)
✅ Answer: A
Explanation: Each vertex and edge is processed once.


Q53. If an algorithm requires n³/3 operations, its asymptotic complexity is:
A) O(n²)
B) O(n³)
C) O(n log n)
D) O(n)
✅ Answer: B
Explanation: Constants are ignored in asymptotic notation.


Q54. The function (n log n)² is asymptotically equal to:
A) O(n² log n)
B) O(n² log² n)
C) O(n³)
D) O(log n)
✅ Answer: B
Explanation: (n log n)² = n² log² n.


Q55. The time complexity of computing nth Fibonacci using iteration is:
A) O(n)
B) O(2ⁿ)
C) O(log n)
D) O(n²)
✅ Answer: A
Explanation: Each term computed once sequentially.


Q56. log(n!) is asymptotically equal to:
A) O(n log n)
B) O(n²)
C) O(log n)
D) O(n³)
✅ Answer: A
Explanation: Using Stirling’s approximation → log(n!) ≈ n log n − n.


Q57. The recurrence T(n) = 2T(n/2) + n/ log n results in:
A) O(n log n)
B) O(n)
C) O(n²)
D) O(n log log n)
✅ Answer: A
Explanation: f(n) smaller than n → T(n) = Θ(n log n).


Q58. If two functions f(n) = 10n² and g(n) = n² + log n, then f(n) = ?
A) Θ(g(n))
B) O(g(n))
C) Ω(g(n))
D) All of these
✅ Answer: D
Explanation: They are asymptotically identical up to constants.


Q59. The number of iterations in binary search for n elements is at most:
A) log₂n
B) n
C) n log n
D) log₁₀n
✅ Answer: A
Explanation: Each iteration halves array → O(log n).


Q60. For recurrence T(n) = T(n−1) + log n, asymptotic complexity is:
A) O(n log n)
B) O(n²)
C) O(log n)
D) O(n)
✅ Answer: A
Explanation: Summation log i from 1 to n ≈ O(n log n).


Q61. The asymptotic complexity of Dijkstra’s algorithm using min-heap is:
A) O(V²)
B) O(E log V)
C) O(V log V)
D) O(V + E)
✅ Answer: B
Explanation: Extract-min + decrease-key → O(E log V).


Q62. Which grows slower: log²n or √n?
A) log²n
B) √n
C) Same
D) Cannot be determined
✅ Answer: A
Explanation: √n grows polynomially faster than log²n.


Q63. If T(n) = T(n/3) + n², the time complexity is:
A) O(n²)
B) O(n² log n)
C) O(n³)
D) O(n log n)
✅ Answer: A
Explanation: f(n)=n² dominates → O(n²).


Q64. Which function dominates asymptotically?
A) n²
B) n²/log n
C) n log n
D) n³
✅ Answer: D
Explanation: n³ grows faster than lower powers.


Q65. An algorithm performs T(n) = 2T(n/2) + O(1). Complexity = ?
A) O(n)
B) O(log n)
C) O(n log n)
D) O(n²)
✅ Answer: A
Explanation: Equivalent to binary tree traversal → O(n).


Q66. log(n² + n) is asymptotically equal to:
A) Θ(log n)
B) Θ(n)
C) Θ(log² n)
D) Θ(n²)
✅ Answer: A
Explanation: n² term dominates → log(n² + n) ≈ 2 log n → Θ(log n).


Q67. For recurrence T(n) = 3T(n/4) + n, asymptotic complexity = ?
A) O(n log n)
B) O(n^(log₄3))
C) O(n²)
D) O(n)
✅ Answer: A
Explanation: n^(log₄3) ≈ n^0.79 < n → f(n)=n dominates → O(n).


Q68. Which algorithm has O(n log n) in worst case?
A) Merge Sort
B) Quick Sort
C) Bubble Sort
D) Insertion Sort
✅ Answer: A
Explanation: Merge Sort’s divide-and-conquer ensures O(n log n).


Q69. If T(n) = T(n−2) + n, complexity = ?
A) O(n²)
B) O(n log n)
C) O(n)
D) O(log n)
✅ Answer: A
Explanation: Linear summation with step 2 → O(n²).


Q70. The asymptotic growth of 5ⁿ compared to 2ⁿ is:
A) Faster
B) Slower
C) Same
D) Cannot determine
✅ Answer: A
Explanation: Higher base exponential grows faster.


Q71. The average-case complexity of linear search is:
A) O(n)
B) O(log n)
C) O(n²)
D) O(1)
✅ Answer: A
Explanation: On average, half elements checked.


Q72. Which function grows fastest asymptotically?
A) n³
B) n³ log n
C) n³ + 100
D) n³ log² n
✅ Answer: D
Explanation: Extra log² n factor dominates.


Q73. The asymptotic lower bound of comparison-based sorting is:
A) Ω(n²)
B) Ω(n log n)
C) Ω(log n)
D) Ω(n)
✅ Answer: B
Explanation: Derived from decision tree argument.


Q74. If f(n)=n log n and g(n)=n, which is true?
A) f(n)=O(g(n))
B) f(n)=Ω(g(n))
C) f(n)=Θ(g(n))
D) None
✅ Answer: B
Explanation: n log n grows faster → lower bound Ω(g(n)).


Q75. The recurrence T(n)=T(n/2)+√n gives:
A) O(√n log n)
B) O(n)
C) O(log n)
D) O(n log n)
✅ Answer: A
Explanation: Using recursion tree → O(√n log n).


Q76. The complexity of finding maximum in an unsorted array = ?
A) O(1)
B) O(n log n)
C) O(n)
D) O(log n)
✅ Answer: C
Explanation: Must scan all elements → O(n).


Q77. f(n)=2ⁿ and g(n)=nⁿ ⇒ which is true?
A) f=o(g)
B) f=Ω(g)
C) f=Θ(g)
D) f grows faster
✅ Answer: A
Explanation: nⁿ grows faster than 2ⁿ.


Q78. In Big-O notation, constants are:
A) Ignored
B) Doubled
C) Multiplied
D) None
✅ Answer: A
Explanation: Only dominant term matters asymptotically.


Q79. For T(n)=4T(n/2)+n, the time complexity is:
A) O(n²)
B) O(n log n)
C) O(n² log n)
D) O(n³)
✅ Answer: A
Explanation: log₂4=2 → O(n²).


Q80. log₂n! asymptotically equals:
A) Θ(n log n)
B) Θ(n²)
C) Θ(log n)
D) Θ(n)
✅ Answer: A
Explanation: Stirling approximation → log₂n! ≈ n log₂n.


Q81. If algorithm’s time T(n)=O(n³) and space S(n)=O(n²), what dominates asymptotically?
A) Time
B) Space
C) Both same
D) Cannot determine
✅ Answer: A
Explanation: n³ > n² asymptotically.


Q82. Function (n/2) log(n/2) = ?
A) Θ(n log n)
B) Θ(log n)
C) Θ(n)
D) Θ(n²)
✅ Answer: A
Explanation: Constants ignored → Θ(n log n).


Q83. T(n)=3T(n/2)+n² gives:
A) O(n²)
B) O(n² log n)
C) O(n³)
D) O(n^(log₂3))
✅ Answer: B
Explanation: f(n)=n² matches → O(n² log n).


Q84. Function n³/10 − n² + 7 grows as:
A) O(n³)
B) O(n²)
C) O(n)
D) Θ(1)
✅ Answer: A
Explanation: n³ dominates all lower powers.


Q85. log(log n) grows slower than:
A) log n
B) n
C) √n
D) All of these
✅ Answer: D
Explanation: Double log is slower than any of these.


Q86. If f(n)=O(n²) and g(n)=O(n³), then f(n)+g(n)=?
A) O(n³)
B) O(n²)
C) O(n⁵)
D) O(n⁶

)
✅ Answer: A
Explanation: Maximum dominates → O(max(n², n³)) = O(n³).


Q87. If T(n)=T(n−1)+T(n−2)+1, complexity is:
A) O(2ⁿ)
B) O(n²)
C) O(n log n)
D) O(log n)
✅ Answer: A
Explanation: Fibonacci-like recurrence → exponential.


Q88. For T(n)=T(n−1)+n, time complexity = ?
A) O(n²)
B) O(n log n)
C) O(n)
D) O(2ⁿ)
✅ Answer: A
Explanation: Summing linear series → O(n²).


Q89. Function n log n + n² log n = ?
A) Θ(n² log n)
B) Θ(n log n)
C) Θ(n²)
D) Θ(log n)
✅ Answer: A
Explanation: Dominant term n² log n.


Q90. log₂(n³) = ?
A) 3 log₂n
B) log₃n
C) n log₂3
D) log₂n + 3
✅ Answer: A
Explanation: log(aᵇ)=b log a → 3 log₂n.


Q91. The fastest asymptotic function:
A) n!
B) 2ⁿ
C) n³
D) n log n
✅ Answer: A
Explanation: Factorial > exponential > polynomial.


Q92. If T(n)=4T(n/2)+n³, complexity = ?
A) O(n³)
B) O(n² log n)
C) O(n⁴)
D) O(n³ log n)
✅ Answer: C
Explanation: log₂4=2 < 3 → f(n)=n³ dominates → O(n³).


Q93. Function (n log n)/(log log n) = ?
A) O(n log n)
B) Ω(n log n)
C) Θ(n log n)
D) o(n log n)
✅ Answer: D
Explanation: Denominator grows slowly → slightly smaller than n log n.


Q94. Binary tree traversal complexity:
A) O(n)
B) O(log n)
C) O(n log n)
D) O(1)
✅ Answer: A
Explanation: Each node visited once.


Q95. If T(n)=2T(n−1)+1, complexity = ?
A) O(2ⁿ)
B) O(n²)
C) O(log n)
D) O(n)
✅ Answer: A
Explanation: Exponential recurrence → 2ⁿ growth.


Q96. f(n)=n²/log n grows slower than:
A) n²
B) n log n
C) n³
D) All of these
✅ Answer: A
Explanation: Division by log n reduces growth rate slightly.


Q97. The asymptotic complexity of heap sort = ?
A) O(n log n)
B) O(n²)
C) O(n)
D) O(log n)
✅ Answer: A
Explanation: Heap construction + n extract-min = O(n log n).


Q98. If f(n)=n² + 3n + 7, then f(n)=?
A) Θ(n²)
B) O(n³)
C) Θ(n)
D) Ω(n³)
✅ Answer: A
Explanation: Dominant term n².


Q99. If T(n)=T(n/2)+n/log n, complexity = ?
A) O(n)
B) O(n log n)
C) O(n log log n)
D) O(n²)
✅ Answer: A
Explanation: f(n) < n → O(n).


Q100. The average-case complexity of QuickSort = ?
A) O(n log n)
B) O(n²)
C) O(log n)
D) O(n)
✅ Answer: A
Explanation: Balanced partitions yield expected O(n log n).

About the Author

examhopeinfo@gmail.com

Administrator

Visit Website View All Posts

Post navigation

Previous: Hashing Algorithm MCQs for GATE
Next: Space Complexity MCQs For Gate Exam

Related News

Vivo X200 Price Drop
  • IT
  • Current Affairs
  • Tech News

Vivo X200: जाने कितनी कम कीमत पर मिल रहा ये 9400 मिडिया टेक प्रोसेसर वाला स्मार्टफोन

examhopeinfo@gmail.com December 23, 2025 0
Samsung Galaxy S25 Plus
  • IT
  • Current Affairs
  • Tech News

Samsung Galaxy S25 Plus पर मिल रही भारी छूट ,जाने सेल प्राइस

examhopeinfo@gmail.com December 22, 2025 0
Electricity bill saving Smart Plug
  • IT
  • Current Affairs
  • Tech News

AI के इस ज़माने में कैसे बिजली बचा रहे हैं यह स्मार्ट प्लग?

examhopeinfo@gmail.com December 21, 2025 0

Recent Posts

  • Vivo X200: जाने कितनी कम कीमत पर मिल रहा ये 9400 मिडिया टेक प्रोसेसर वाला स्मार्टफोन
  • Samsung Galaxy S25 Plus पर मिल रही भारी छूट ,जाने सेल प्राइस
  • AI के इस ज़माने में कैसे बिजली बचा रहे हैं यह स्मार्ट प्लग?
  • क्या है यह GhostPairing Scam और बिना पासवर्ड और सिम के क्यों हो रहा है व्हाट्सप्प अकाउंट हैक
  • Leica कैमरे के साथ जल्द लॉन्च हो सकता है Xiaomi Ultra 17

At ExamHope, we understand that preparing for exams can be challenging, overwhelming, and sometimes stressful. That’s why we are dedicated to providing high-quality educational resources, tips, and guidance to help students and aspirants achieve their goals with confidence. Whether you are preparing for competitive exams, school tests, or professional certifications, ExamHope is here to make your learning journey smarter, easier, and more effective.

Quick links

  • About us
  • Contact Us
  • Privacy Policy
  • Terms and Conditions
  • Disclaimer
  • DMCA Policy

Category

  • Computer Network
  • Computer Organization and Architecture
  • Data Structures
  • C Language
  • Theory of Computation
  • Database

You may have missed

Vivo X200 Price Drop
  • IT
  • Current Affairs
  • Tech News

Vivo X200: जाने कितनी कम कीमत पर मिल रहा ये 9400 मिडिया टेक प्रोसेसर वाला स्मार्टफोन

examhopeinfo@gmail.com December 23, 2025 0
Samsung Galaxy S25 Plus
  • IT
  • Current Affairs
  • Tech News

Samsung Galaxy S25 Plus पर मिल रही भारी छूट ,जाने सेल प्राइस

examhopeinfo@gmail.com December 22, 2025 0
Electricity bill saving Smart Plug
  • IT
  • Current Affairs
  • Tech News

AI के इस ज़माने में कैसे बिजली बचा रहे हैं यह स्मार्ट प्लग?

examhopeinfo@gmail.com December 21, 2025 0
Ghost Pairing Scam on Whatsapp
  • IT
  • Current Affairs
  • Tech News

क्या है यह GhostPairing Scam और बिना पासवर्ड और सिम के क्यों हो रहा है व्हाट्सप्प अकाउंट हैक

examhopeinfo@gmail.com December 21, 2025 0
Copyright © All rights reserved for ExamHope. | MoreNews by AF themes.
Go to mobile version