Skip to content
ExamHope Logo

Primary Menu
  • Digital Logic
    • Arithmetic Operations
    • Asynchronous/Ripple Counters
    • Basic Gates
    • Boolean Algebraic Theorems
    • Codes
  • Data Structures
    • Binary Heaps
    • Binary Search
    • Binary Search Trees
    • Binary Tree
    • Binary Tree Sort
    • Bipartite Graphs
    • Complete Graph
  • Theory of Computation
    • Finite Automata
    • Finite Automaton First Example
  • About us
  • Contact Us
  • Privacy Policy
  • Terms and Conditions
  • DMCA Policy
  • Home
  • IT
  • Number representations and computer arithmetic MCQs in Digital Logic
  • IT
  • Digital Logic
  • Number representations and computer arithmetic

Number representations and computer arithmetic MCQs in Digital Logic

examhopeinfo@gmail.com October 15, 2025
Number representations and computer arithmetic

Number representations and computer arithmetic

Number representations and computer arithmetic MCQs for Gate Exam

Q1.

Convert (110101)₂ to decimal.
A. 45
B. 52
C. 53
D. 54

Answer: C
Solution:
(110101)₂ = 1×2⁵ + 1×2⁴ + 0×2³ + 1×2² + 0×2¹ + 1×2⁰
= 32 + 16 + 0 + 4 + 0 + 1 = 53.


Q2.

Convert (257)₈ to binary.
A. 010101111
B. 010101110
C. 101011111
D. 010111011

Answer: A
Solution:
Each octal digit → 3 binary bits
2 → 010, 5 → 101, 7 → 111 → (010101111)₂.


Q3.

Convert (3A7)₁₆ to binary.
A. 001110100111
B. 001110101111
C. 001111100111
D. 001110011111

Answer: A
Solution:
3 → 0011, A(10) → 1010, 7 → 0111 → (001110100111)₂.


Q4.

Convert (111011)₂ to hexadecimal.
A. 3B
B. 3D
C. 3E
D. 37

Answer: C
Solution:
Group into 4 bits → 0011 1011 → 3E₁₆.


Q5.

Convert (345)₁₀ to binary.
A. 101011001
B. 101011001
C. 101011010
D. 101011111

Answer: B
Solution:
Divide 345 by 2 repeatedly → binary = 101011001.


Q6.

Find decimal equivalent of (101010.11)₂.
A. 42.5
B. 42.75
C. 43.25
D. 43.75

Answer: B
Solution:
Integer: 101010 = 42
Fraction: .11 = 0.75
→ 42.75.


Q7.

Convert (234)₁₀ to hexadecimal.
A. EA
B. EB
C. EA
D. E9

Answer: A
Solution:
234 ÷ 16 → quotient 14 (E), remainder 10 (A) → EA₁₆.


Q8.

Convert (10111011)₂ to octal.
A. 273
B. 273
C. 373
D. 353

Answer: C
Solution:
Group in 3 bits → 010 111 011 → 2 7 3 → (273)₈.


Q9.

Convert (0.625)₁₀ to binary.
A. .100
B. .101
C. .110
D. .011

Answer: A
Solution:
0.625×2=1.25(1), 0.25×2=0.5(0), 0.5×2=1.0(1) → .101 (Typo fixed → Answer B).


Q10.

(1111011)₂ = ? in decimal
A. 121
B. 123
C. 125
D. 127

Answer: D
Solution:
Sum of powers = 64+32+16+8+2+1=123 (Correct Answer: B).


Q11.

Convert (1100 0101)₂ to hexadecimal.
A. C5
B. D5
C. C6
D. B5

Answer: A
Solution:
1100 = C, 0101 = 5 → C5.


Q12.

Convert (7F)₁₆ to decimal.
A. 126
B. 127
C. 128
D. 125

Answer: B
Solution:
7×16 + 15 = 112 + 15 = 127.


Q13.

(765)₈ = ? in binary
A. 111110101
B. 111110101
C. 111110101
D. 111101101

Answer: A
Solution:
7 → 111, 6 → 110, 5 → 101 → (111110101)₂.


Q14.

The number of bits required to represent (200)₁₀ in binary is:
A. 7
B. 8
C. 9
D. 10

Answer: B
Solution:
2⁷=128 < 200 < 256=2⁸ → 8 bits.


Q15.

What is (101101)₂ × (11)₂?
A. 111111
B. 111011
C. 1000011
D. 110111

Answer: C
Solution:
45 × 3 = 135 → (10000111)₂ (Correct Answer: C).


Q16.

(100110)₂ ÷ (10)₂ = ?
A. 10011
B. 11001
C. 10101
D. 11101

Answer: A
Solution:
38 ÷ 2 = 19 → (10011)₂.


Q17.

Convert (-23)₁₀ into 8-bit 2’s complement form.
A. 11101001
B. 11101010
C. 11100111
D. 11101000

Answer: A
Solution:
23 = 00010111 → 1’s complement = 11101000 → +1 = 11101001.


Q18.

Represent (+23)₁₀ in sign-magnitude (8-bit).
A. 00010111
B. 10010111
C. 00011000
D. 10011000

Answer: A
Solution:
MSB=sign=0, magnitude=23=10111 → 00010111.


Q19.

Convert (0.3125)₁₀ to binary.
A. .0101
B. .0101
C. .0101
D. .0100

Answer: A
Solution:
0.3125×2=0.625(0),0.625×2=1.25(1),0.25×2=0.5(0),0.5×2=1.0(1)→.0101.


Q20.

Convert (11101101)₂ into hexadecimal.
A. ED
B. EC
C. FD
D. DC

Answer: A
Solution:
1110=E, 1101=D → ED.


Q21.

Convert (4A)₁₆ into decimal.
A. 72
B. 73
C. 74
D. 75

Answer: C
Solution:
4×16 + 10 = 74.


Q22.

Convert (11101000)₂ to decimal.
A. 232
B. 234
C. 236
D. 238

Answer: B
Solution:
128 + 64 + 32 + 8 + 2 = 234.


Q23.

The decimal equivalent of (10011011)₂ is:
A. 155
B. 156
C. 157
D. 155

Answer: A
Solution:
128+16+8+2+1=155.


Q24.

The binary equivalent of (59)₁₀ is:
A. 111011
B. 111011
C. 111011
D. 111100

Answer: A
Solution:
32+16+8+3=59 → (111011)₂.


Q25.

Convert (2D)₁₆ into binary.
A. 00101101
B. 01001101
C. 00101111
D. 00101011

Answer: A
Solution:
2 → 0010, D(13) → 1101 → (00101101)₂.

About the Author

examhopeinfo@gmail.com

Administrator

Visit Website View All Posts

Post navigation

Previous: Minimization MCQs in Digital Logic For Gate Exam
Next: Machine instructions and addressing modes MCQs in Digital Logic

Related News

Understanding the Role of the Lexical Analyzer
  • Role of the Lexical Analyzer
  • Compiler Design
  • IT

Lexical Analysis — Understanding the Role of the Lexical Analyzer

examhopeinfo@gmail.com December 5, 2025
Parsing A Simple Ompass Compiler
  • IT
  • Compiler Design
  • Parsing

Parsing — A Simple Onepass Compiler

examhopeinfo@gmail.com December 4, 2025
Syntax-directed translation A Simple Ompass Compiler
  • IT
  • Compiler Design
  • syntax-directed translation

A Simple Ompass Cempiler — Syntax-directed translation

examhopeinfo@gmail.com December 4, 2025

Recent Posts

  • Lexical Analysis — Understanding the Role of the Lexical Analyzer
  • Parsing — A Simple Onepass Compiler
  • A Simple Ompass Cempiler — Syntax-directed translation
  • A Simple Ompass Compiler — Syntax definition
  • Decidability: Countable Sets (The Halting Problem Revisited)

Archives

  • December 2025
  • November 2025
  • October 2025
  • September 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024

You may have missed

Understanding the Role of the Lexical Analyzer
  • Role of the Lexical Analyzer
  • Compiler Design
  • IT

Lexical Analysis — Understanding the Role of the Lexical Analyzer

examhopeinfo@gmail.com December 5, 2025
Parsing A Simple Ompass Compiler
  • IT
  • Compiler Design
  • Parsing

Parsing — A Simple Onepass Compiler

examhopeinfo@gmail.com December 4, 2025
Syntax-directed translation A Simple Ompass Compiler
  • IT
  • Compiler Design
  • syntax-directed translation

A Simple Ompass Cempiler — Syntax-directed translation

examhopeinfo@gmail.com December 4, 2025
A Simple Ompass Compiler
  • IT
  • A Simple Ompass Compiler
  • Compiler Design

A Simple Ompass Compiler — Syntax definition

examhopeinfo@gmail.com December 4, 2025

At ExamHope, we understand that preparing for exams can be challenging, overwhelming, and sometimes stressful. That’s why we are dedicated to providing high-quality educational resources, tips, and guidance to help students and aspirants achieve their goals with confidence. Whether you are preparing for competitive exams, school tests, or professional certifications, ExamHope is here to make your learning journey smarter, easier, and more effective.

Quick links

  • About us
  • Contact Us
  • Privacy Policy
  • Terms and Conditions
  • Disclaimer
  • DMCA Policy

Category

  • Computer Network
  • Computer Organization and Architecture
  • Data Structures
  • C Language
  • Theory of Computation
  • Database
Copyright © All rights reserved for ExamHope. | MoreNews by AF themes.